Arabidopsis carpel genetic regulatory network modeling and reconstruction

C. La Rota¹, F. Monéger², F. Tarissan³, L. Liberti³, J. Traas² and M. Morvan¹

¹Complex Systems Institute (IXXI) - ²Laboratory of Reproduction and Development of Plants (RDP), ENS, Lyon, France.

³ LIX, Ecole Polytechnique, Palaiseau, France

email: camilo.larota@ens-lyon.fr

1. Introduction

Objectives

 Understand the molecular mechanisms underlying the early carpel development.

Gene network dynamics
+
Other factors

Motivation

- Carpel gives rise to fruit, major socioeconomic importance.
- Early stages of development have crucial role on final morphology.

im: Inflorescence meristem
1-5: Flower development stages

- To be integrated with cellular model into virtual carpel model

Methodology.

- Combination of experimental and modeling approaches.
- Gathering of transcriptomic data from inflorescences containing mix of early flower development stages, on both wild type and mutant plants affected by carpel development abnormalities (both own and published data).
- Gathering of knowledge on gene interactions (idem).
- Identify direct targets of Transcription Factors
 Data analysis, construction of a raw interaction network.
- Build of hypothetic scenario and networks.
- Inference of models.
- Validation by simulation, comparison with experimental data
- Iterate until coherent models are found.

2. Methods

• Gene regulatory network (GRN) model

$$q_i(t+1) = H\left(\sum_{j=1}^n \alpha_{ij} w_{ij} q_j(t) - \theta_i\right)$$

- $q_i(t)$: qualitative binary activity for gene i (i =1 .. N)
 - w_{ij} : interaction strength (ratio (induced production)/decay).
- $\alpha_{i,j}$: Kind of the interaction (inhibition=-1, activation=+1)
- θ_i : Activation threshold.
- H: Heavyside function

Estimation of model parameters

- Given: i) prior network topology and ii) expression data
- Find parameters that minimize Hamming distances (D_H) from model steady states to observed gene expression patterns
- Subject to biological constraints

Global optimization by mathematical programming

$$\begin{array}{ccc}
\min_{x} & f(x) \\
\text{subject to} & g(x) <= 0
\end{array}$$

Parameters:

x: decision variables, f: objective function, g: constraints

- Sets: V, A, T, R(genes, interactions, time steps, regions)
- Variables: $q_{v,r,t}: V imes R imes T o \{0,1\}, \, w: A o \mathbb{R}^+, \, heta: A o \mathbb{R}$
 - $y_{r,t}: R \times T \to \{0,1\}$ (=1 if fixed point condition)
 - $\alpha: A \to \{-1, +1\}, \text{ bounds: } \theta^L, \theta^U, \theta^L, \theta^U, w^L, w^U$
 - $q_{v,r}^o, q_{v,r}^i$ (observed gene expression and initial cond.)

- Objective function: $\sum_{r \in R_s} \sum_{t \in R_s} y_{r,t} \sum_{v \in V_s} \left| q_{v,r,t} - q_{v,r}^o \right| + \dots$

 $\sum_{r \in R_s} t \in R_s \quad v \in V_s$ Evolution rule and fixed point condition as constraints $\sum_{\alpha_{u,v} w_{u,v} q_{u,r,t-1}} e^{-1} = \theta_{u,r} q_{v,r,t} - \|V\| (1 - q_{v,r,t})$

- Subject to constraints on variable bounds and initial cond.
- Reformulation and use of solvers (CPLEX, MINLP, etc)

3. Results

Recensed interactions

Gene expression patterns

- Superposition of expression patterns reveals regions.
- Most of the data is difficult to analyze, multiple interpretations are possible.
- Tentative subdivisions in homogeneous regions are proposed.

Scenario of flower development

Problem decomposition in stable subnetworks

Number of stable states = number of final tissues (organs) stage 2 = at least 4 stable states (sepals (1) + meristem (3))

Subnetworks proposal

Stage 3

2
4
5
6

Frontiers

Floral Meristem

+
Carpel Identity

Validation of identified model by simulation

Stability test

- Analysis
 - Consistent for (Meristem Lateral Organ)
 - Simplified (Meristem Lateral Organ) Network
 - Unconsistent for lateral organ polarity
 - Return to data and propose network modification

4. Summary

- First time a molecular regulatory network for carpel development is constructed.
 - Current network for stage 2 supports meristematic and lateral organ identity stable states as expected but still not organ polarity.
- Complexity of genetic and molecular data on interactions
 - Large number of genes and interactions.
 - Very uncertain and contradictory data.
- Modeling
 - First approach with bivalued qualitative model
 - Adapted to the complexity of the network.
 - Convenient for qualitative stable state analysis.
 - Decomposition in subnetworks facilitates analysis.

Drawback: Not adapted to study transient phenomena.

 Mathematical programming methods have been applied successfully on small gene networks for parameter estimation.

5. Perspectives

- Current work
 - Study next stages: 3 to 5 (carpel formation).
 - Test prediction of mutant phenotypes.
- Model
 - Extension to multivalued model is probably needed.
 - Addition of constraints based on more detailed biological information on interactions.
 - Comparison of mathematical programming model methods with simulation approaches for bigger networks.
- Future
 - Availability of expression data at cell resolution.
 - Integration of the network into cellular model
 (currently constructed by partner team in Montpellier).