Modeling large-scale networks

Fabien Tarissan

CNRS

École Normale Supérieure Paris-Saclay

Parcours IA – ML&IL – COURS 2

2023/09/25

Plan

1 Summary

2 Network models

Random graphs (Erdös-Rényi) Small-world model (Watts-Strogatz) Scale-free model (Barabási and Albert) Configuration Model Bipartite model

3 Dynamic networks

Mobile networks Markovian model Empirical study

Networks

Definition : Collection of entities related by means of interactions.

Large complex networks :

- Computer science : Internet, Peer-to-peer, Web
- Biology : Gene regulatory networks, Protein-protein interaction networks
- Social science : friendship relations, co-authors networks
- And a lot more : economy, linguistic, ...

Some properties are shared by a lot of networks

 \implies leads to reconsider traditional approaches

Should lead to common solutions

Problematic

Measurement :

- Real graph → partial view
- Representative sample ? Bias ?

Analysis :

- Representation of data
- Relevant metrics
- Shared by all kind of networks?

Modelling :

- Random generation of similar structures (with observed properties)
- Underlying mechanisms
- Support for simulations
- Explanation of the observed properties

... and a lot more :

how to describe a network?

how generate a network?

algorithmic, dynamics, ...

normale supérieure paris – saclay —

Definitions

Networks as graphs

A graph G = (V, E) is a couple of sets.

- V is the set of vertices (or nodes), n = |V| is the number of nodes
- $E \subseteq (V \times V)$ is the set of *edges* (or *links*), m = |E| is the number of links

Notions

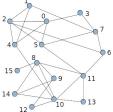
- degree, average degree of the graph, density of the graph, ...
- path, distance, connected component, average length, diameter, ...
- directed vs. undirected graphs, weighted vs. unweighted networks, ...
- one-mode, two-mode networks, ... multi-level networks, multiplex networks
- clustering coefficient, transitive ratio, community, modularity, ...

Data encoding

Adjacency matrices, adjacency lists, ...

école
normale
supérieure
paris-saclay-

Communities



Goal : Identify automatically relevant groups.

Challenges :

- Unknown number of communities
- Unknown sizes of communities
- Scalability ?

Algorithms

- A lot of different approaches : percolation, random walk, k-core, ...
- Louvain algorithm : efficient, scalable. Based on modularity :

$$Q = \frac{1}{2m} \sum_{C} e_{c} - \frac{a_{C}^{2}}{2m}$$

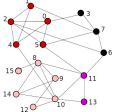
$$e_C$$
 : links $\in C$, a_C : links with one end $\in C$

Related to a mini-project! http://tarissan.complexnetworks.fr/iaml/community.pdf

Fabien Tarissan — Network Model — Modeling large-scale networks

école normale supérieure paris-saclay

Communities



Goal : Identify automatically *relevant groups*.

Challenges :

- Unknown number of communities
- Unknown sizes of communities
- Scalability ?

Algorithms

- A lot of different approaches : percolation, random walk, k-core, ...
- Louvain algorithm : efficient, scalable. Based on modularity :

$$Q = \frac{1}{2m} \sum_{C} e_{c} - \frac{a_{C}^{2}}{2m}$$

$$e_C$$
 : links $\in C$, a_C : links with one end $\in C$

Related to a mini-project! http://tarissan.complexnetworks.fr/iaml/community.pdf

Fabien Tarissan — Network Model — Modeling large-scale networks

école normale supérieure paris-saclay

Network Models

A network science

Common properties

- Networks from different context share similar structural properties
- Dynamic processes driving the formation of the networks can not be related to a particular context.
- Needs to seek explanations regardless of the real nature of the networks.

 \implies New research questions

Highlighting common properties	Searching for explanatory models
	• How do the networks organize?
	• Why do they organize in this particular shape ?
	Contrast between globales properties and local interactions ! ⇒ Emergent properties

A network science

Common properties

- . Networks from different context share similar structural properties
- Dynamic processes driving the formation of the networks can not be related to a particular context.
- Needs to seek explanations regardless of the real nature of the networks. .

 \implies New research questions

Highlighting common properties	Searching for explanatory models
 short distances 	• How do the networks organize?
 low density high local density	• Why do they organize in this particular shape ?
 heterogeneous degree distribution 	Contrast between globales properties and local interactions ! → Emergent properties
•	

2 examples :

- Small-world networks (Nature 1998)
- 2 Scale-free networks (Science 1999, Nature 2000)

Fabien Tarissan - Network Model - Modeling large-scale networks

9/56

Random graphs – Motivation

Understand the structure

Are the observed properties normal? Answer : compare to a synthetic random graph

Draw randomly (uniform probability) in the set of graphs (of a given size)

- \rightarrow common properties to the large majority of graphs
- \rightarrow expected properties

Simulate processes

Note : also possible with a non-random generative model

école normale supérieure paris-saclay-

Erdös-Rényi model

G_{n,p}

- n nodes
- Any edge exists with a given probability p

Erdös-Rényi model

G_{n,p}

- n nodes
- Any edge exists with a given probability p

Complexity : $\mathcal{O}(n^2)$

Erdös-Rényi model

G_{n,m}

- *n* nodes
- *m* edges randomly chosen

école-

normale supérieure paris-saclay

Erdös-Rényi model

G_{n,m}

- n nodes
- *m* edges randomly chosen

Complexity : $\mathcal{O}(m)$

école

Equivalence between $G_{n,p}$ and $G_{n,m}$

p is the density

$$p = \frac{2m}{n(n-1)}$$

 $G_{n,m}$ and $G_{n,p}$ are equivalent if p and m verify this relationship

Double edges

 $G_{n,m}$: non-zero probability to draw double edges

Hard to detect

- suppose we write the graph without storage
- how to proceed ?

In practice

- few double edges
- do not change dramatically the properties observed

 \rightarrow often considered as normal edges but avoid loops

Example : random graph, n = m = 4950

Observation : clique of 100 nodes (other nodes with degree 0)

Surprising?

Example : random graph, n = m = 4950

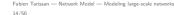
Observation : clique of 100 nodes (other nodes with degree 0)

Surprising?

Probability to have degree $0: q = (1 - p)^{n-1} \sim 0.14$.

 \Rightarrow Expected number of degree 0 nodes :

 $nq \sim 683$



Example : random graph, n = m = 4950

Observation : clique of 100 nodes (other nodes with degree 0)

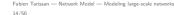
Surprising?

Probability to have degree $0: q = (1-p)^{n-1} \sim 0.14$.

 \Rightarrow Expected number of degree 0 nodes :

 $nq \sim 683$

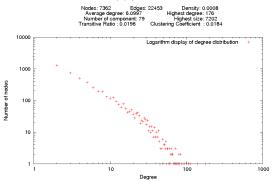
$683 \neq 4850$ \rightarrow seem very unlikely with a random process (other process involved)



école normale supérieure paris – saclay —

Real example

Graph properties from file "PPI-dr"

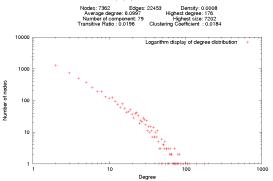


Observation :

Fabien Tarissan — Network Model — Modeling large-scale networks 15/56 école normale supérieure paris – saclay —

Real example

Graph properties from file "PPI-dr"



Observation : existance of high degree nodes (\geq 100)

Surprising?

Fabien Tarissan — Network Model — Modeling large-scale networks 15/56

école normale supérieure paris – saclay –

Real example

Observation : existance of high degree nodes (\geq 100)

Surprising?

Probability to have degree k? (suppose n = 5000 and m = 10000)

Real example

Observation : existance of high degree nodes (\geq 100)

Surprising?

Probability to have degree k? (suppose n = 5000 and m = 10000)

$$\begin{split} p(k) &= C_{k}^{n} * p^{k} * (1-p)^{n-k} < C_{k}^{n} * p^{k} \\ \text{Here, } p^{k} &\equiv (1/10^{3})^{k} \\ C_{k}^{n} &= \frac{n!}{k!(n-k)!} = \frac{n*(n-1)*\ldots*(n-k+1)}{k!} < \frac{n^{k}}{k!} \\ \text{But } k! &\equiv \sqrt{2\pi k} (\frac{k}{e})^{k} \text{ (Stirling)} \\ \text{Thus, } p(k) &< \frac{(5000)^{k}}{cst - gt - 1*50^{k}} * (\frac{1}{10^{3}})^{k} \\ p(k) < (10^{2})^{k} * (\frac{1}{10^{3}})^{k} \\ \text{It turns out that } p(k) < (\frac{1}{10})^{k} \text{ (very unlikely !)} \end{split}$$

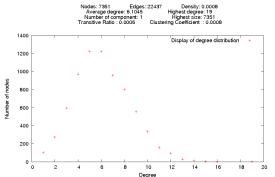
école	
normale	
sumérieure	
paris-saclay-	

Real example

Observation : existance of high degree nodes (\geq 100)

Surprising?

Random :



15/56

Fabien Tarissan - Network Model - Modeling large-scale networks

école normale supérieure paris-saclay-

Properties of Erdös-Rényi graphs

- Density
- Connectedness
- Average distance, diameter
- Degree distribution
- Clustering coefficient

Properties of Erdös-Rényi graphs

- Density set by operator
- Connectedness giant component, size $\mathcal{O}(n)$
- Average distance, diameter ~ log(n)
- Degree distribution homogeneous
- Clustering coefficient
 <u>density</u>

- (if $m \geq \mathcal{O}(n)$)
- (for $m \geq \mathcal{O}(n)$)

Properties of Erdös-Rényi graphs

	real random	
density	low	low
connectedness	giant comp.	giant comp.
distances	low	low
degree distrib.	heterogeneous	homogeneous
clustering	high	low
communities	yes	no

Conclusion on Erdös-Rényi graphs

Real-world complex networks are very different from random Erdös-Rényi graphs

Consequences

- Resemblances (connectedness, distances) are actually meaningful
- Not a good model for simulations, proofs

 \rightarrow Other models?

Swall-World networks

A study from Duncan Watts (sociologist) and Steven Strogatz (mathematician)

Empirical study of 3 networks of different nature

- biological network : neural network (C. Elegans worm)
- (human) infrastructure : power-grid network of (part of) the US
- social network : collaboration networks between movie actors

	n	m	L _{actual}	L _{random}	C_{actual}	C _{random}
Film actors	225 226	6 869 393	3.65	2.99	0.79	0.00027
Power grid	4 941	6 596	18.7	12.4	0.080	0.005
C. elegans	282	1974	2.65	2.25	0.28	0.05

Swall-World networks

A study from Duncan Watts (sociologist) and Steven Strogatz (mathematician)

Empirical study of 3 networks of different nature

- biological network : neural network (C. Elegans worm)
- (human) infrastructure : power-grid network of (part of) the US
- social network : collaboration networks between movie actors

	n	m	L _{actual}	L _{random}	C_{actual}	C _{random}
Film actors	225 226	6 869 393	3.65	2.99	0.79	0.00027
Power grid	4 941	6 596	18.7	12.4	0.080	0.005
C. elegans	282	1974	2.65	2.25	0.28	0.05

The networks all have short distances and a high local density \implies "Small-world" networks

Which driving mechanisms?

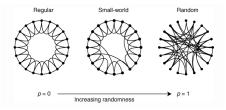
 ${\sf Small-world} = {\sf short \ distances \ and \ high \ clustering \ \dots \ incompatible \ properties \, !}$

Standard models :

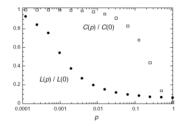
- Erdös-Rényi (random) : short distances but low clustering
- k-regular : high clustering but high distances

Watts-Strogatz model (Nature, 1998)

From a k-regular network, random reconnections of edges with probability p (parameter of the model)



Watts-Strogatz model

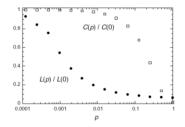


Results



école normale supérieure paris-saclay

Watts-Strogatz model



Results

With a very low value of $p \in [0.001 : 0.01]$ (ie. small number of random rewirings) one can generate graphs with both properties (small-world graphs).

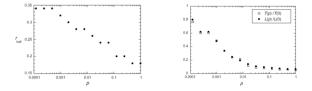
Interpretation

- the links organize primarily locally (\mapsto hence a high local density)
- random links have the ability to create bridges between distant regions (
 →
 hence low average distances)

What are the benefits?

Diffusion models (SIR model)

The diffusion spreads nodes by nodes according to the infection rate (parameter). \longrightarrow Study of the impact of structural properties on the diffusion

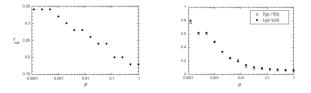


Results

What are the benefits?

Diffusion models (SIR model)

The diffusion spreads nodes by nodes according to the infection rate (parameter). \longrightarrow Study of the impact of structural properties on the diffusion



Results

The more random links there are, the weakest the infection rate needs to be

For a given infection rate, the diffusion is more efficient when there are random links

Duncan J. Watts and Steven H. Strogatz, "Collective dynamics of 'small-world' networks", Nature, vol. 393, $n^{\circ}6634$, 1998, p. 440-442.

Fabien Tarissan — Network Model — Modeling large-scale networks 21/56

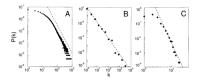
ormale supérieure paris-saclay-

Scale-free networks

A study from Albert-Lázló Barabási and Réka Albert (physicists)

All nodes have the same degree ... is this realistic?

- collaborations between actors
- the Web
- the american power-grid network



- **1** heterogeneous degree distribution (close to a power-law)
 - 2 Most of the nodes have a very small degree
- 8 Existence of hubs
- \implies Scale-free networks

Fabien Tarissan — Network Model — Modeling large-scale networks 22/56

école	
normale	
supérieure	
paris-saclay-	

Preferential attachment principle

A model to explain this scale-free nature?

Main flaws of existing models : they are static !

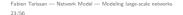
- random graphs
- k-regular graphs
- Watts-Strogatz model

But most of networks grow in time (web, scientific collaborations, ...) \implies How do new nodes link to existing ones?

Barabási-Albert model

Simple (but reallistic) hypothesis : graph built according to a preferential attachment principle :

$$\prod(k_i) = \frac{k_i}{\sum_j k_j}$$



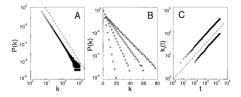
école	
normale	
supérieure	
paris-saclay-	

Barabási-Albert model

Virtuous effect of the model

The more a node has a high degree, the more it attracts new nodes ... hence an even higher degree it gets!

Justification : "rich gets richer" rule (or Merton's "Matthew's effect")



Result

This model generates graphs with a power-law degree distribution (not proved here)

Albert-László Barabási and Réka Albert, "Emergence of scaling in random networks", Science, vol. 286, n $^{\circ}$ 5439, 1999, p. 509-512.

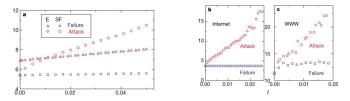
What role do the *hubs* play?

Different perturbations

- failure : one removes nodes randomly
- attack : on removes nodes with high degree first

Network model

- random networks
- scale-free networks



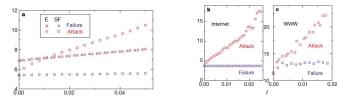
What role do the *hubs* play?

Different perturbations

- failure : one removes nodes randomly
- attack : on removes nodes with high degree first

Network model

- random networks
- scale-free networks



Results

25/56

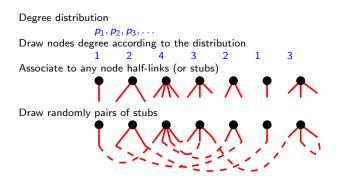
The presence of hubs make netwoks :

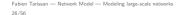
- more robust regarding random failures
- but vulnerable to targeted attacks

 $\label{eq:rescaled} \begin{array}{l} \textbf{Reka Albert, Hawoong Jeong and Albert-László Barabási, "Error and attack tolerance of complex networks", \\ \underline{Nature, xol. 406, n N_{10}^{\circ} 6794, \underline{s}2000, \underline{s}2.378, \underline{382, s}. \end{array}$

école normale supérieure paris-saclay

Configuration model





Configuration model (implem)

Table : node *i* occurs exactly $\delta(i)$ times

0 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 5 | 6 | 6 | 6

Algorithm 1: Generating a graph with fixed degree distribution

begin

Choose a random pair of stubs

école normale supérieure paris-saclay----

Switching method

Principle

- we must have a graph having the degree distribution
- iterate switching of edges ends
- after a sufficient amount of switches, the graph produced is a random element of the set of graphs

Switching method

Why does it work?

- The degree of any node remains unchanged
- The process is a Markov chain .

can be seen as a random walk in the set of graphs defined by this degree distribution

after a while, we visit all elements with the same probability (not proved here)

How can we know that enough switches have been made?

Measuring some features (ex : clustering) during the process when these features do not evolve any more?

Properties – Comparison

	real	Erdös-Rényi	fixed d.d.
density	low	low	low
connectedness	giant comp.	giant comp.	giant comp.
distances	low	low	low
degree	heterogeneous	homogeneous	heterogeneous
clustering	high	low	low
communities	yes	no	no

 \rightarrow clustering is not a consequence of heterogeneous degree

Bipartite Graph

Newman, Watts and Strogatz - PNAS, 2002

Example of the Internet Movie Data Base : what means a link between two actors? Richer representation : network actor/movie

Vocabulary bipartite graph :

2 subsets of nodes A and B, links only connect nodes in A to nodes in B

the actor network is a projection of this network with less information .

Bipartite case

The direct generative method (as well as the switching method) can be applied :

- using two degree distributions (for nodes A and B)
- connecting only nodes of A to nodes of B

Results

- explains clustering and degree in projections for some graphs in Newman et al. : coboarding ok, not in collaboration networks
- no large-scale structure (communities)

école normale supérieure paris-saclay-----

Conclusion – **Properties**

A langage to describe networks : graphs

- nodes, links
- degree, density
- path, length, diameter, connected component
- local density, clustering coefficient, transitive ratio
- community

Proprerties of the networks

Most networks share common properties. One needs models to explain the emergence of those properties.

	Network	random	k-regular	CM	WS	AB
density	low	low	low	low	low	low
connect.	giant comp.	giant comp.	giant comp.	giant comp.	giant comp.	giant comp.
distances	short	short	long	short	short	short
degree	heterogeneous	homogeneous	homogeneous	heterogeneous	homogeneous	heterogeneous
clustering	fort	low	high	low	high	low

Conclusion – **Network Science**

A new direction of research

- 1 Search for common properties of the networks
- 2 Identification of mechanisms leading to the emergence of those properties
- 3 Identification of the benefits of those properties for networks

Small-world networks

- Small-world property : short distances and high local density
- Watts-Strogatz model : few random links in a k-regular graph
- Benefits : fast diffusion of information

Réseaux sans échelle

- Scale-free property : heterogeneous degree distribution
- Barabási-Albert model : preferential attachment principle
- Benefits : robust regarding random failures

école	
normale	
supérieure	
paris-saclay-	

Mobile Networks

Dynamical aspect of networks

Motivation

- Development of wireless devices
- A lot of new open dataset
- Dynamics ON and OF the network
- New structural properties
- Redefining usual metrics (graphs)

Issues

- How acquire knowledge from this object? (measure)
- Which notable properties? (analyze)
- Which models best capture those properties? (modelling)

Models for evolving graphs

Background :

- Evolving graph model : recent [FER02]
- Evolving graph = Succession of distinct graphs G_0 , G_1 , ... with V given
- Capture all types of dynamics

Models for evolving graphs

Background :

- Evolving graph model : recent [FER02]
- Evolving graph = Succession of distinct graphs G_0, G_1, \dots with V given
- Capture all types of dynamics

Variant of edge-markovian evolving graph :

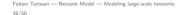
- Temporal dependency in the evolution of the graph
- G_{t+1} determined by G_t and 2 parameters :
 - p : probability of creation of a non-existing link
 - *d* : probability of deletion of an *existing* link

Example

Example with 4 nodes, p = 0.3, d = 0.2 and 5 time steps.

```
1 3 2 3
1 4 1 3
2 3 1 2
2 3 4 4
2 4 1 2
2 4 4 4
3 4 1 3
```

- Ist and 2nd column : identifiers of nodes involved in the contact
- 3rd column : starting time of contact
- 4th column : ending time of contact



Advantages / drawbacks

Interest is twofold :

- $\forall G_0, p, d$: converge towards an Erdös Rényi graph with $\hat{p} = \frac{p}{p+d}$
- Few parameters => theoretical results

But it is also its weakness :

Advantages / drawbacks

Interest is twofold :

- $\forall G_0, p, d$: converge towards an Erdös Rényi graph with $\hat{p} = \frac{p}{p+d}$
- Few parameters => theoretical results

But it is also its weakness :

- 2 parameters to rule all creations/deletions
- Suppose that those 2 values are representative for the l'entire evolution of the de network

Methodology

Goal :

Conduct a study to see if it is true.

- Analyze properties of the dynamics as observed in several dataset
- Comparison with the markovian model

Elements of response

- Yes for [WHI11] (and [VOJ11]) but ...
- ... study over 1 dataset
- ... the criteria is weak : time needed to flood the network

Rollernet

- Rollerblade tour in Paris
- Date : August 2006.
- Duration : 3h with a break (30 min) couvering approx. 30km,
- Location : street of Paris
- Technology : *iMotes* (bluetooth)
- Size : 62 participants
- Frequency : every 15s.

école	
normale	
supérieure	
paris-saclay-	

Infocom06

- Experiment made during Infocom conference at Barcelona.
- Date : April 2006
- Duration : 3 days
- Technology : *iMote*
- Size : 98 iMotes (78 participants, 17 static, and 3 in elevators)
- Frequency : every 120s.

Sociopattern

- Exhibition in at a gallery (deseases propagations).
- Date : 2009
- Duration : 3 months
- Technology : radio bagdes
- Size : 88 to 410 (depends on the day)
- Frequency : every 20s.

école	
normale	
supérieure	
paris-saclay-	

6 case studies

Dataset	RollerNet	Infocom05	Infocom06	HT09	Socio	PMTR
Duration	3 hours	4 days	4 days	2,5 days	1 day	10 days
Participants	62	41	98	113	151	44
Contacts	60146	17 682	148 784	9 865	2 0 5 1	11 895
Frequency (sec.)	15	120	120	20	20	1

For each :

- "Physical" contact network among individuals
- Each individual is equipped with a sensing device
- Detection between devices if proximity between individuals (2 to 10 m.)
- Frequency of detection varies, as well as duration of the experiments

In the rest of the presentation, 3 dataset only :

- RollerNet
- Infocom06 : similar to Infocom05
- SocioPattern : similar to HT09 and PMTR

Methodology

école	
normale	
sumérieure	
paris-saclay-	

Methodology

For each dataset and for each time step

- Fraction of created links (over possible new links)
- Fraction of deleted links (over existing links)

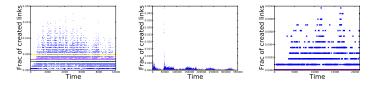
Corresponds to the parameters p and d of the model

Analyze :

- Evolution over time
- Distribution of the values
- · Generation of artificial graphs according to the markovian model
- Comparison between real/artificial graph

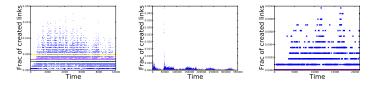
normale supérieure paris-saclay

Created links



 $\ensuremath{\operatorname{FIGURE}}$ – Evolution of the proportion de created links over time

Created links



 $\ensuremath{\operatorname{FIGURE}}$ – Evolution of the proportion de created links over time

Results RollerNet : notion of average is relevant Infocom06, SocioPattern : wide range of values

- Infocom06, SocioPattern : average, median and 75th percentile overcome by weak values
- \implies Infocom06, SocioPattern : non realistic

Deleted links

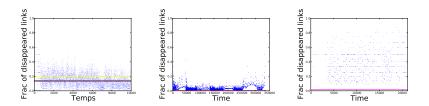


 FIGURE – Evolution of the proportion of deleted links over time

école	
normale	
supérieure	
paris-saclay	

Deleted links

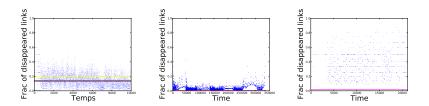


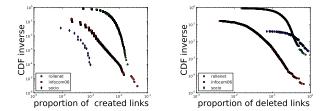
 FIGURE – Evolution of the proportion of deleted links over time

- Same observation but amplified
- Range of values is covered ([0 : 1])
- Particular case for d = 1

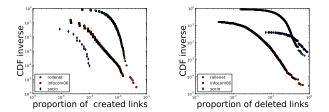
Fabien	Tarissan	 — Network 	Model —	Modeling	large-scale networks	
47/56						

normale supérieure
paris-saclay-

Distribution o	f <i>p</i> and	d d va	lues
Dataset	RollerNet	Infocom06	Socio
Fractions of created links (average)	$3.2(10^{-3})$	$9.5(10^{-5})$	9 (10 ⁻⁶)
Fractions of deleted links (average)	$1.4 (10^{-1})$	$4.5(10^{-3})$	$1.6(10^{-2})$



Distribution o	f <i>p</i> and	d d va	lues
Dataset	RollerNet	Infocom06	Socio
Fractions of created links (average)	$3.2(10^{-3})$	9.5 (10 ⁻⁵)	9 (10 ⁻⁶)
Fractions of deleted links (average)	$1.4 (10^{-1})$	4.5 (10 ⁻³)	$1.6(10^{-2})$



Results

- Clearly heterogeneous for Infocom06
- and on several order of magnitudes
- RollerNet : sudden slope around the average value

Fabien Tarissan — Network Model — Modeling large-scale networks 48/56

Methodology

So far :

- Studied the dynamics related to creation and delation of links
- Provided evidences that the models is probably not suited to particular dataset

How to demonstrate that the model is not pertinent?

Methodology

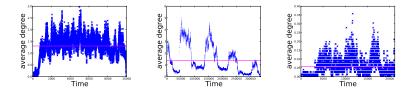
So far :

- Studied the dynamics related to creation and delation of links
- Provided evidences that the models is probably not suited to particular dataset

How to demonstrate that the model is not pertinent?

- Choose an external criteria (ie not the fraction of created and deleted links) ...
- ... but close enough the meaning of p and d (for fairness)
- Compute the value of the criteria for the real and the artificial graphs.
- Comparison between real/artificial graph.

Evolution of mean degree

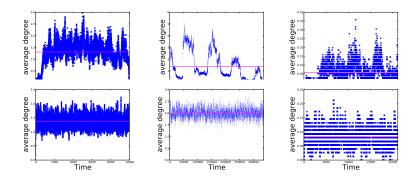


Results

Fabien Tarissan — Network Model — Modeling large-scale networks 50/56

école normale supérieure paris-saclay

Evolution of mean degree

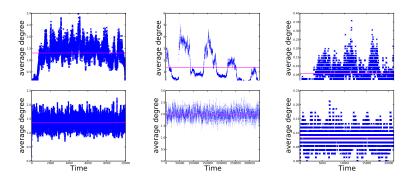


Results

Fabien Tarissan — Network Model — Modeling large-scale networks 50/56

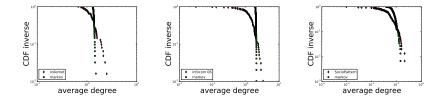
école normale supérieure paris – saclay —

Evolution of mean degree



- "Uniformization" for Infocom06 and SocioPattern (not the same range of values!)
- Seems to have little impact on RollerNet
- Except at the beginning (expected)

Average degree distribution

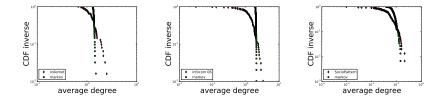


Results

Fabien Tarissan — Network Model — Modeling large-scale networks 51/56

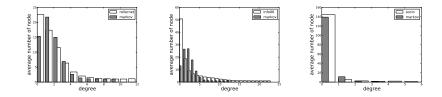
école	
normale	
supérieure	
paris-saclay-	

Average degree distribution



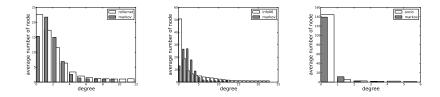
- Infocom06 : clear differences between model and real data (expected)
- RollerNet and SocioPattern : also different, although less obvious

Degree distribution



école	
normale	
sumérieure	
marie - caclast	

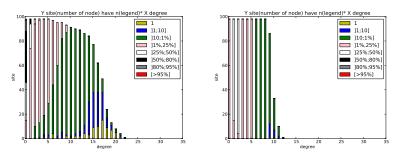
Degree distribution



Results

average value relevant $\not\Longrightarrow$ the model reproduces well the <code>global</code> properties of the <code>networks</code>

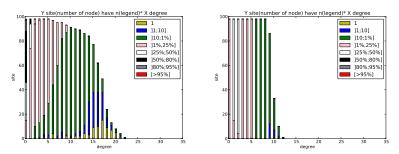
Distribution and frequency of the degrees (Infocom06)



Results

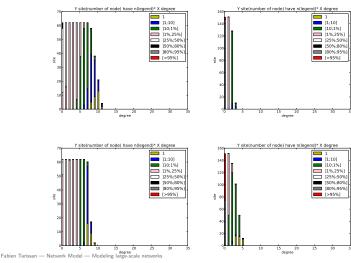
Fabien Tarissan — Network Model — Modeling large-scale networks 53/56 école normale supérieure paris-saclay-

Distribution and frequency of the degrees (Infocom06)



- Nodes are more degree-stable in real networks
- Small degrees are over-represented
- No node with the same degree more than 50 % of the time in the model

Distribution and frequency of the degrees (RollerNet, SocioPattern)



école normale supérieure paris - saclay

54/56

Conclusions and perspectives

Conclusions

- · Confrontation markovian model vs. real data
- Hypothesis of homogeneity does not stand in most of the cases
- Even in favourable case, it does not reproduce the dynamics
- Still remain useful : cf [WHI11, VOJ11]

Perspectives

- Consider other way to define p and d (following an heterogeneous distribution? different for each nodes? depending on the graph state? ...)
- Study refined properties (distribution of connexions)
- Analyze correlation between creations and deletions
- Take into account the local density

Related to a mini-project! http://tarissan.complexnetworks.fr/iaml/mobile.pdf

What next?

http://tarissan.complexnetworks.fr/iaml.html

Practical session on (static) network models http://tarissan.complexnetworks.fr/iaml/tp_mlia.pdf

Discuss the community detection mini-project http://tarissan.complexnetworks.fr/iaml/community.pdf

Oiscuss the mobile mini-project http://tarissan.complexnetworks.fr/iaml/mobile.pdf

