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Networks

Definition : Collection of entities related by means of interactions.

Large complex networks :

• Computer science : Internet, Peer-to-peer, Web

• Biology : Gene regulatory networks, Protein-protein interaction networks

• Social science : friendship relations, co-authors networks

• And a lot more : economy, linguistic, . . .

Some properties are shared by a lot of networks

=⇒ leads to reconsider traditional approaches

Should lead to common solutions
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Problematic

Measurement : how to acquire information on a network ?

• Real graph 7→ partial view

• Representative sample ? Bias ?

Analysis : how to describe a network ?

• Representation of data

• Relevant metrics

• Shared by all kind of networks ?

Modelling : how generate a network ?

• Random generation of similar structures (with observed properties)

• Underlying mechanisms

• Support for simulations

• Explanation of the observed properties

... and a lot more : algorithmic, dynamics, ...
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Definitions

Networks as graphs

A graph G = (V ,E) is a couple of sets.

• V is the set of vertices (or nodes), n = |V | is the number of nodes

• E ⊆ (V × V ) is the set of edges (or links), m = |E | is the number of links

Notions

• degree, average degree of the graph, density of the graph, ...

• path, distance, connected component, average length, diameter, ...

• directed vs. undirected graphs, weighted vs. unweighted networks, ...

• one-mode, two-mode networks, ... multi-level networks, multiplex networks

• clustering coefficient, transitive ratio, community, modularity, ...

Data encoding

• Adjacency matrices, adjacency lists, ...
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Communities

Goal : Identify automatically relevant groups.

Challenges :

• Unknown number of communities

• Unknown sizes of communities

• Scalability ?

Algorithms

• A lot of different approaches : percolation, random walk, k-core, ...

• Louvain algorithm : efficient, scalable. Based on modularity :

Q =
1

2m

∑
C

ec −
a2
C

2m

eC : links ∈ C , aC : links with one end ∈ C

Related to a mini-project !
http://tarissan.complexnetworks.fr/iaml/community.pdf
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A network science
Common properties

• Networks from different context share similar structural properties

• Dynamic processes driving the formation of the networks can not be related to
a particular context.

• Needs to seek explanations regardless of the real nature of the networks.

=⇒ New research questions

Highlighting common properties

• short distances

• low density

• high local density

• heterogeneous degree
distribution

• ...

Searching for explanatory models

• How do the networks organize ?

• Why do they organize in this particular
shape ?

Contrast between globales properties and local
interactions !
=⇒ Emergent properties

2 examples :

1 Small-world networks (Nature 1998)

2 Scale-free networks (Science 1999, Nature 2000)
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Random graphs – Motivation

Understand the structure

Are the observed properties normal ?
Answer : compare to a synthetic random graph

Draw randomly (uniform probability) in the set of graphs (of a given size)
→ common properties to the large majority of graphs
→ expected properties

Simulate processes

Note : also possible with a non-random generative model
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Erdös-Rényi model

Gn,p

• n nodes

• Any edge exists with a given probability p

Complexity : O(n2)
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Erdös-Rényi model

Gn,m

• n nodes

• m edges randomly chosen

Complexity : O(m)
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Equivalence between Gn,p and Gn,m

p is the density

p = 2m
n(n−1)

Gn,m and Gn,p are equivalent if p and m verify this relationship
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Double edges

Gn,m : non-zero probability to draw double edges

Hard to detect

• suppose we write the graph without storage

• how to proceed ?

In practice

• few double edges

• do not change dramatically the properties observed

→ often considered as normal edges
but avoid loops
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Notion of expected property

Example : random graph, n = m = 4950

Observation : clique of 100 nodes (other nodes with degree 0)

Surprising ?

Probability to have degree 0 : q = (1− p)n−1 ∼ 0.14.

⇒ Expected number of degree 0 nodes :

nq ∼ 683

683 6= 4850
→ seem very unlikely with a random process

(other process involved)
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Notion of expected property
Real example

Observation :

existance of high degree nodes (≥ 100)

Surprising ?
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Notion of expected property

Real example

Observation : existance of high degree nodes (≥ 100)

Surprising ?

Probability to have degree k ? (suppose n = 5000 and m = 10000)

p(k) = Cn
k ∗ p

k ∗ (1− p)n−k < Cn
k ∗ p

k

Here, pk ≡ (1/103)k

Cn
k = n!

k!(n−k)!
=

n∗(n−1)∗...∗(n−k+1)
k!

< nk

k!

But k! ≡
√

2πk( k
e

)k (Stirling)

Thus, p(k) <
(5000)k

cst−gt−1∗50k
∗ ( 1

103 )k

p(k) < (102)k ∗ ( 1
103 )k

It turns out that p(k) < ( 1
10

)k (very unlikely !)
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Notion of expected property
Real example

Observation : existance of high degree nodes (≥ 100)

Surprising ?

Random :
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Properties of Erdös-Rényi graphs

• Density

set by operator

• Connectedness

giant component, size O(n)
(if m ≥ O(n))

• Average distance, diameter

∼ log(n)
(for m ≥ O(n))

• Degree distribution

homogeneous

• Clustering coefficient

' density
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Properties of Erdös-Rényi graphs

real random
density low low
connectedness giant comp. giant comp.
distances low low
degree distrib. heterogeneous homogeneous
clustering high low
communities yes no
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Conclusion on Erdös-Rényi graphs

Real-world complex networks are very different from random Erdös-Rényi graphs

Consequences

• Resemblances (connectedness, distances) are actually meaningful

• Not a good model for simulations, proofs . . .

→ Other models ?

Fabien Tarissan — Network Model — Modeling large-scale networks

17/56



cnr s en sta

Swall-World networks

A study from Duncan Watts (sociologist) and Steven Strogatz (mathematician)

Empirical study of 3 networks of different nature

• biological network : neural network (C. Elegans worm)

• (human) infrastructure : power-grid network of (part of) the US

• social network : collaboration networks between movie actors

n m Lactual Lrandom Cactual Crandom

Film actors 225 226 6 869 393 3.65 2.99 0.79 0.00027
Power grid 4 941 6 596 18.7 12.4 0.080 0.005
C. elegans 282 1974 2.65 2.25 0.28 0.05

The networks all have short distances and a high local density
=⇒ ”Small-world” networks
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Which driving mechanisms ?
Small-world = short distances and high clustering ... incompatible properties !

Standard models :

• Erdös-Rényi (random) : short distances but low clustering

• k-regular : high clustering but high distances

Watts-Strogatz model (Nature, 1998)

From a k-regular network, random reconnections of edges with probability p
(parameter of the model)
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Watts-Strogatz model

Results

With a very low value of p ∈ [0.001 : 0.01] (ie. small number of random rewirings)
one can generate graphs with both properties (small-world graphs).

Interpretation

• the links organize primarily locally ( 7→ hence a high local density)

• random links have the ability to create bridges between distant regions ( 7→
hence low average distances)
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What are the benefits ?
Diffusion models (SIR model)

The diffusion spreads nodes by nodes according to the infection rate (parameter).
−→ Study of the impact of structural properties on the diffusion

Results

1 The more random links there are, the weakest the infection rate needs to be

2 For a given infection rate, the diffusion is more efficient when there are random
links

Duncan J. Watts and Steven H. Strogatz, ”Collective dynamics of ’small-world’ networks”, Nature, vol. 393,
n◦6634, 1998, p. 440-442.

Fabien Tarissan — Network Model — Modeling large-scale networks

21/56



cnr s en sta

What are the benefits ?
Diffusion models (SIR model)

The diffusion spreads nodes by nodes according to the infection rate (parameter).
−→ Study of the impact of structural properties on the diffusion

Results

1 The more random links there are, the weakest the infection rate needs to be

2 For a given infection rate, the diffusion is more efficient when there are random
links

Duncan J. Watts and Steven H. Strogatz, ”Collective dynamics of ’small-world’ networks”, Nature, vol. 393,
n◦6634, 1998, p. 440-442.

Fabien Tarissan — Network Model — Modeling large-scale networks

21/56



cnr s en sta

Scale-free networks
A study from Albert-Lázló Barabási and Réka Albert (physicists)

All nodes have the same degree ... is this realistic ?

• collaborations between actors

• the Web

• the american power-grid network

Results

1 heterogeneous degree distribution (close to a power-law)

2 Most of the nodes have a very small degree

3 Existence of hubs

=⇒ Scale-free networks
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Preferential attachment principle

A model to explain this scale-free nature ?

Main flaws of existing models : they are static !

• random graphs

• k-regular graphs

• Watts-Strogatz model

But most of networks grow in time (web, scientific collaborations, ...)
=⇒ How do new nodes link to existing ones ?

Barabási-Albert model

Simple (but reallistic) hypothesis : graph built according to a preferential attachment
principle : ∏

(ki ) =
ki∑
j kj
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Barabási-Albert model
Virtuous effect of the model

The more a node has a high degree, the more it attracts new nodes
... hence an even higher degree it gets !

Justification : “rich gets richer” rule (or Merton’s “Matthew’s effect”)

Result

This model generates graphs with a power-law degree distribution (not proved here)

Albert-László Barabási and Réka Albert, ”Emergence of scaling in random networks”, Science, vol. 286, n◦ 5439,
1999, p. 509-512.

Fabien Tarissan — Network Model — Modeling large-scale networks

24/56



cnr s en sta

What role do the hubs play ?
Different perturbations

• failure : one removes nodes randomly

• attack : on removes nodes with high degree
first

Network model

• random networks

• scale-free networks

Results

The presence of hubs make netwoks :

• more robust regarding random failures

• but vulnerable to targeted attacks

Réka Albert, Hawoong Jeong and Albert-László Barabási, ”Error and attack tolerance of complex networks”,
Nature, vol. 406, n◦ 6794, 2000, p. 378-382.
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Configuration model

Degree distribution
p1, p2, p3, . . .

Draw nodes degree according to the distribution
1 2 4 3 2 1 3

Associate to any node half-links (or stubs)

Draw randomly pairs of stubs
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Configuration model (implem)

Table : node i occurs exactly δ(i) times

0 1 1 2 2 2 2 3 3 3 4 4 5 6 6 6

Algorithm 1: Generating a graph with fixed degree distribution
begin

Choose a random pair of stubs
i = 2m
while i > 0 do

u = random (0 , i − 1)
swap boxes u and i − 1
v = random (0 , i − 2)
swap boxes v and i − 2
i = i-2
// edge (u, v) created

end

end
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Switching method

Principle

• we must have a graph having the degree distribution

• iterate switching of edges ends

• after a sufficient amount of switches, the graph produced is a random element
of the set of graphs
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Switching method

Why does it work ?

• The degree of any node remains unchanged

• The process is a Markov chain

can be seen as a random walk in the set of graphs defined by this degree
distribution

after a while, we visit all elements with the same probability (not proved here)

How can we know that enough switches have been made ?

Measuring some features (ex : clustering) during the process
when these features do not evolve any more ?
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Properties – Comparison

real Erdös-Rényi fixed d.d.
density low low low
connectedness giant comp. giant comp. giant comp.
distances low low low
degree heterogeneous homogeneous heterogeneous
clustering high low low
communities yes no no

→ clustering is not a consequence of heterogeneous degree
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Bipartite Graph

Newman, Watts and Strogatz - PNAS, 2002

Example of the Internet Movie Data Base : what means a link between two actors ?
Richer representation : network actor/movie

Vocabulary

• bipartite graph :
2 subsets of nodes A and B,
links only connect nodes in A to nodes in B

• the actor network is a projection of this network with less information
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Bipartite case

The direct generative method (as well as the switching method) can be applied :

• using two degree distributions (for nodes A and B)

• connecting only nodes of A to nodes of B

Results

• explains clustering and degree in projections
for some graphs
in Newman et al. : coboarding ok, not in collaboration networks

• no large-scale structure (communities)
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Conclusion – Properties

A langage to describe networks : graphs

• nodes, links

• degree, density

• path, length, diameter, connected component

• local density, clustering coefficient, transitive ratio

• community

Proprerties of the networks

Most networks share common properties.
One needs models to explain the emergence of those properties.

Network random k-regular CM WS AB
density low low low low low low
connect. giant comp. giant comp. giant comp. giant comp. giant comp. giant comp.
distances short short long short short short
degree heterogeneous homogeneous homogeneous heterogeneous homogeneous heterogeneous
clustering fort low high low high low
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Conclusion – Network Science

A new direction of research

1 Search for common properties of the networks

2 Identification of mechanisms leading to the emergence of those properties

3 Identification of the benefits of those properties for networks

Small-world networks

• Small-world property : short distances and high local density

• Watts-Strogatz model : few random links in a k-regular graph

• Benefits : fast diffusion of information

Réseaux sans échelle

• Scale-free property : heterogeneous degree distribution

• Barabási-Albert model : preferential attachment principle

• Benefits : robust regarding random failures
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Dynamical aspect of networks

Motivation

• Development of wireless devices

• A lot of new open dataset

• Dynamics ON and OF the network

• New structural properties

• Redefining usual metrics (graphs)

Issues

• How acquire knowledge from this object ? (measure)

• Which notable properties ? (analyze)

• Which models best capture those properties ? (modelling)
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Models for evolving graphs

Background :

• Evolving graph model : recent [FER02]

• Evolving graph = Succession of distinct graphs G0, G1, ... with V given

• Capture all types of dynamics

Variant of edge-markovian evolving graph :

• Temporal dependency in the evolution of the graph

• Gt+1 determined by Gt and 2 parameters :

• p : probability of creation of a non-existing link
• d : probability of deletion of an existing link
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Example

Example with 4 nodes, p = 0.3, d = 0.2 and 5 time steps.

1 3 2 3
1 4 1 3
2 3 1 2
2 3 4 4
2 4 1 2
2 4 4 4
3 4 1 3

• 1st and 2nd column : identifiers of nodes involved in the contact

• 3rd column : starting time of contact

• 4th column : ending time of contact

Fabien Tarissan — Network Model — Modeling large-scale networks
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Advantages / drawbacks

Interest is twofold :

• ∀G0, p, d : converge towards an Erdös Rényi graph with p̂ = p
p+d

• Few parameters =⇒ theoretical results

But it is also its weakness :

• 2 parameters to rule all creations/deletions

• Suppose that those 2 values are representative for the l’entire evolution of the
de network
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p+d

• Few parameters =⇒ theoretical results

But it is also its weakness :

• 2 parameters to rule all creations/deletions

• Suppose that those 2 values are representative for the l’entire evolution of the
de network

Fabien Tarissan — Network Model — Modeling large-scale networks

39/56



cnr s en sta

Methodology

Goal :

Conduct a study to see if it is true.

• Analyze properties of the dynamics as observed in several dataset

• Comparison with the markovian model

Elements of response

• Yes for [WHI11] (and [VOJ11]) but ...

• ... study over 1 dataset

• ... the criteria is weak : time needed to flood the network
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Rollernet

• Rollerblade tour in Paris

• Date : August 2006.

• Duration : 3h with a break (30 min) couvering approx. 30km,

• Location : street of Paris

• Technology : iMotes (bluetooth)

• Size : 62 participants

• Frequency : every 15s.
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Infocom06

• Experiment made during Infocom conference at Barcelona.

• Date : April 2006

• Duration : 3 days

• Technology : iMote

• Size : 98 iMotes (78 participants, 17 static, and 3 in elevators)

• Frequency : every 120s.
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Sociopattern

• Exhibition in at a gallery (deseases propagations).

• Date : 2009

• Duration : 3 months

• Technology : radio bagdes

• Size : 88 to 410 (depends on the day)

• Frequency : every 20s.
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6 case studies

Dataset RollerNet Infocom05 Infocom06 HT09 Socio PMTR

Duration 3 hours 4 days 4 days 2,5 days 1 day 10 days
Participants 62 41 98 113 151 44

Contacts 60 146 17 682 148 784 9 865 2 051 11 895
Frequency (sec.) 15 120 120 20 20 1

For each :

• ”Physical” contact network among individuals

• Each individual is equipped with a sensing device

• Detection between devices if proximity between individuals (2 to 10 m.)

• Frequency of detection varies, as well as duration of the experiments

In the rest of the presentation, 3 dataset only :

• RollerNet

• Infocom06 : similar to Infocom05

• SocioPattern : similar to HT09 and PMTR
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Methodology

For each dataset and for each time step

• Fraction of created links (over possible new links)

• Fraction of deleted links (over existing links)

Corresponds to the parameters p and d of the model

Analyze :

• Evolution over time

• Distribution of the values

• Generation of artificial graphs according to the markovian model

• Comparison between real/artificial graph
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Created links
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Figure – Evolution of the proportion de created links over time

Results

• RollerNet : notion of average is relevant

• Infocom06, SocioPattern : wide range of values

• Infocom06, SocioPattern : average, median and 75th percentile overcome by
weak values

• =⇒ Infocom06, SocioPattern : non realistic
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Deleted links
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Figure – Evolution of the proportion of deleted links over time

Results

• Same observation but amplified

• Range of values is covered ([0 : 1])

• Particular case for d = 1

Fabien Tarissan — Network Model — Modeling large-scale networks

47/56



cnr s en sta

Deleted links

0 2000 4000 6000 8000 10000

Temps
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

 o
f d

is
ap

pe
ar

ed
 li

nk
s

0 50000 100000 150000 200000 250000 300000 350000

Time
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

 o
f d

is
ap

pe
ar

ed
 li

nk
s

0 5000 10000 15000 20000

Time
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

 o
f d

is
ap

pe
ar

ed
 li

nk
s

Figure – Evolution of the proportion of deleted links over time

Results

• Same observation but amplified

• Range of values is covered ([0 : 1])

• Particular case for d = 1

Fabien Tarissan — Network Model — Modeling large-scale networks

47/56



cnr s en sta

Distribution of p and d values
Dataset RollerNet Infocom06 Socio

Fractions of created links (average) 3.2 (10−3) 9.5 (10−5) 9 (10−6)
Fractions of deleted links (average) 1.4 (10−1) 4.5 (10−3) 1.6 (10−2)
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Results

• Clearly heterogeneous for Infocom06

• and on several order of magnitudes

• RollerNet : sudden slope around the average value
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Methodology

So far :

• Studied the dynamics related to creation and delation of links

• Provided evidences that the models is probably not suited to particular dataset

How to demonstrate that the model is not pertinent ?

• Choose an external criteria (ie not the fraction of created and deleted links) ...

• ... but close enough the meaning of p and d (for fairness)

• Compute the value of the criteria for the real and the artificial graphs.

• Comparison between real/artificial graph.
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Evolution of mean degree
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Results

• ”Uniformization” for Infocom06 and SocioPattern (not the same range of
values !)

• Seems to have little impact on RollerNet

• Except at the beginning (expected)
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Average degree distribution
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Results

• Infocom06 : clear differences between model and real data (expected)

• RollerNet and SocioPattern : also different, although less obvious
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Degree distribution
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Results

average value relevant 6=⇒ the model reproduces well the global properties of the
networks
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Distribution and frequency of the

degrees (Infocom06)
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Results

• Nodes are more degree-stable in real networks

• Small degrees are over-represented

• No node with the same degree more than 50 % of the time in the model
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Distribution and frequency of the

degrees (RollerNet, SocioPattern)

0 5 10 15 20 25 30 35
degree

0

10

20

30

40

50

60

70
si

te
Y site(number of node) have n(legend)* X degree

1
]1;10]
]10;1%]
]1%,25%]
]25%;50%]
]50%;80%]
]80%;95%]
[>95%]

0 5 10 15 20 25 30 35
degree

0

20

40

60

80

100

120

140

160

si
te

Y site(number of node) have n(legend)* X degree

1
]1;10]
]10;1%]
]1%,25%]
]25%;50%]
]50%;80%]
]80%;95%]
[>95%]

0 5 10 15 20 25 30 35
degree

0

10

20

30

40

50

60

70

si
te

Y site(number of node) have n(legend)* X degree

1
]1;10]
]10;1%]
]1%,25%]
]25%;50%]
]50%;80%]
]80%;95%]
[>95%]

0 5 10 15 20 25 30 35
degree

0

20

40

60

80

100

120

140

160

si
te

Y site(number of node) have n(legend)* X degree

1
]1;10]
]10;1%]
]1%,25%]
]25%;50%]
]50%;80%]
]80%;95%]
[>95%]

Fabien Tarissan — Network Model — Modeling large-scale networks

54/56



cnr s en sta

Conclusions and perspectives

Conclusions

• Confrontation markovian model vs. real data

• Hypothesis of homogeneity does not stand in most of the cases

• Even in favourable case, it does not reproduce the dynamics

• Still remain useful : cf [WHI11, VOJ11]

Perspectives

• Consider other way to define p and d (following an heterogeneous distribution ?
different for each nodes ? depending on the graph state ? ...)

• Study refined properties (distribution of connexions)

• Analyze correlation between creations and deletions

• Take into account the local density

Related to a mini-project !
http://tarissan.complexnetworks.fr/iaml/mobile.pdf
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What next ?

http://tarissan.complexnetworks.fr/iaml.html

1 Practical session on (static) network models
http://tarissan.complexnetworks.fr/iaml/tp_mlia.pdf

2 Discuss the communty detection mini-project
http://tarissan.complexnetworks.fr/iaml/community.pdf

3 Discuss the mobile mini-project
http://tarissan.complexnetworks.fr/iaml/mobile.pdf
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