
Community detection in graphs
Fabien Tarissan

In this practical we consider algorithms for partitioning the nodes of the input graph.

1 What is expected
You are asked to study community detections algorithms for graphs with an experimental approach.
This requires you to:

1. Propose your own community detection method and implement it.

2. Compare it to existing algorithms (either by implementing them or using existing implemen-
tations).

In the report, it is expected that you present:

• a description of the community detection problem

• a description of the algorithms used (most important part) and an evaluation of their com-
plexity,

• experimental results : the datasets used (and their features), optimization score (e.g. mod-
ularity), features of the communities obtained (e.g. size distribution), computation times,
criteria used to compare the algorithms, ...

• you can conclude on a discussion of your results : performances, variations or upgrades or
any thought that you consider relevant.

2 Some leading exercices
Exercise 1 — Simple bechmark

Implement an algorithm to generate the following random graph.
• The graph has 400 nodes partition into 4 clusters of 100 nodes.
• Each pair of nodes in the same cluster is connected with a probability p
• Each pair of nodes in different clusters is connected with a probability q 6 p

Draw the obtained graphs for various values of p and q using a software of your choice. For
instance: https://networkx.github.io/documentation/stable/reference/drawing

What is the effect of increasing or decreasing p
q on the community structure?

Exercise 2 — Test a community detection approach
Choose and adapt/implement an algorithm proposed in Section 3.
Run your program on the benchmark graphs generated for Exercise 1. Draw the graph and
color the nodes nodes using a different color for each community.

Exercise 3 — Experimental evaluation
Compare several methods by designing your own experiments:

• evaluate the scalability of the programs using graphs of different sizes and report the
running time and memory consumption.

1

https://networkx.github.io/documentation/stable/reference/drawing


• evaluate the accuracy of the algorithms using the benchmark made in question 1, the LFR
benchmark https://github.com/eXascaleInfolab/LFR-Benchmark_UndirWeightOvp and
some metrics to compare partitions: Adjusted Rand Index (ARI), Normalized Mutual
Information (NMI), ...

• evaluate the accuracy of the algorithms on network with ground-truch community struc-
tures: http://snap.stanford.edu/data/index.html#communities

Which algorithm(s) perform(s) the best?

Exercise 4 — New algorithm
Suggest your own community detection method and implement it.
Explain your algorithm: the intuition behind it and the implementation issues.
Add it in the experimental evaluation (exercise 2).

3 Possible community detection algorithms
• Louvain algorithm:

Fast unfolding of communities in large networks, Vincent D Blondel, Jean-Loup Guillaume,
Renaud Lambiotte, Etienne Lefebvre, 2008.
Implementation: https://perso.uclouvain.be/vincent.blondel/research/louvain.html

• Divisive edge-betweenness algorithm :
Community structure in social and biological networks, Girvan and Newman, 2002.
Implementation in python : github.com/kjahan/community

• Random walk based algorithm :
Computing Communities in Large Networks Using Random Walks, Pons and Latapy, 2005.
Implementation in C++ : www-complexnetworks.lip6.fr/~latapy/PP/walktrap.html

• Leading eigenvector algorithm :
Finding community structure in networks using the eigenvectors of matrices, Newman, 2006.
Implementation in R : igraph.org/r/doc/cluster_leading_eigen.html

• Simulated annealing algorithm :
Functional cartography of complex metabolic networks, Guimera and Amaral, 2005.
Implementation in C : seeslab.info/downloads/network-c-libraries-rgraph

• Label propagation algorithm :
Near linear time algorithm to detect community structures in large-scale networks, Ragaha-
van et al., 2007.
Implementation in R : igraph.org/r/doc/cluster_label_prop.html

• K-cliques based algorithm (overlapping communities) :
Uncovering the overlapping community structure of complex networks in nature and society,
Palla et al., 2005.
Implementation in R : igraph.wikidot.com/community-detection-in-r

• Physics inspired algorithm (overlapping communities) :
Detecting fuzzy community structures in complex networks with a Potts model, Reichardt and
Bornholdt, 2004.
Implementation in R : igraph.org/r/doc/cluster_spinglass.html

• Map equation algorithm :
Maps of random walks on complex networks reveal community structure, Rosvall and Berg-
strom, 2007.
Implementation in R : igraph.org/r/doc/cluster_infomap.html

2

https://github.com/eXascaleInfolab/LFR-Benchmark_UndirWeightOvp
http://snap.stanford.edu/data/index.html#communities
https://perso.uclouvain.be/vincent.blondel/research/louvain.html
github.com/kjahan/community
www-complexnetworks.lip6.fr/~latapy/PP/walktrap.html
igraph.org/r/doc/cluster_leading_eigen.html
seeslab.info/downloads/network-c-libraries-rgraph
igraph.org/r/doc/cluster_label_prop.html
igraph.wikidot.com/community-detection-in-r
igraph.org/r/doc/cluster_spinglass.html
igraph.org/r/doc/cluster_infomap.html

	What is expected
	Some leading exercices
	Possible community detection algorithms

