
Self-assembling graphs

VINCENT DANOS and FABIEN TARISSAN
Équipe PPS, CNRS & Université, Paris VII, France
(*Author for correspondence, e-mail: vincent.danos@pps.jussieu.fr)

Abstract. A self-assembly algorithm for synchronising agents and have them arrange

according to a particular graph is given. This algorithm, expressed using an ad hoc rule-
based process algebra, extends Klavins’ original proposal (Klavin, 2002: Automatic
synthesis of controllers for assembly and formation forming. In: Proceedings of the
International Conference on Robotics and Automation), in that it relies only on point-to-

point communication, and can deal with any assembly graph whereas Klavins’ method
dealt only with trees.

Key words: Concurrency theory, distributed algorithm theory, process algebra

1. Introduction

In a number of different subject areas, nanotechnologies (Drexler and
Smalley, 2003), amorphous computations (Nagpal, 2002), molecular
biology (Hasty et al., 2002), one commonly finds a debate about whe-
ther and how complex shapes, structures and functions can be gener-
ated by local interactions between simple components. Klavins
addressed this question in the field of robotics (Klavins, 2002). The
problem is that of synchronising a population of autonomous agents
and have them achieve a particular disposition in space specified as a
tree. The aim of the present paper is to extend the solution given by
Klavins to the case of arbitrary graphs, and to provide a formaliza-
tion of the self-assembly algorithm that takes complete care of the
subtler part of building a distributed consensus among agents.

The idea of the algorithm is to circulate between agents belonging
to a same connected component a single copy of a mapping of their
component. Whoever possesses this mapping can either pass it over to
a neighbour, or decide to create a new connection, based on a suc-
cessful point-to-point communication with another agent. Note that
since agents are building a potentially cyclic graph, they may have to
create edges to their own component. Necessary updates after a

Natural Computing (2006) � Springer 2006
DOI 10.1007/s11047-006-9013-9

growth decision are shipped along a tree spanning the current compo-
nent. Both the component and the tree are dynamically created. Inter-
estingly, the algorithm is parameterized by the choice of a growth
scenario specifying when an edge can be created. Thus, the solution
we propose naturally supports additional constraints pertaining to
which intermediate graphs are allowed during the growth of the
graph.

The solution and the problem itself are laid down in the language
of concurrency theory, and the algorithm is written in a rule-based
process algebra that one could view as a simplified version of Milner’s
p-calculus (Milner, 1999). Although the self-assembly algorithm we
present is independent of this particular choice, there is a good reason
for such a formal approach. More often than not, one can go wrong
in the description of such synchronisation procedures (we did quite a
number of times), and the use of formal methods seems legitimate in
this context, since they allow for a clear statement of correctness, and
a correctness proof based on a well-established notion of equivalence
known as bisimulation.

Our formal treatment is made relative to abstract or logical space.
Including true space and explicit motorization in the agents supposes
a significant extension of the usual concurrency models and as such
represents an interesting challenge to formal methods. Such an exten-
sion would in particular allow a refined description of the agents
behavior in the case of a group being dislocated. This is a matter to
which we plan to return in a further work. For now, we provide a
crude treatment of such ‘‘crashes’’ by introducing non deterministic
alarms. The correctness of the algorithm enriched with alarms is also
proved. A demo illustrating the algorithm is available on line.1

The self-assembly question we address here was inspired by similar
questions raised in the context of formal molecular biology (Danos
and Laneve, 2003, 2004). Indeed, a strong structural property that
one might look for when defining a formal language for protein–pro-
tein interaction is precisely whether the formation of complexes
(assemblies of proteins held together by weak bonds) can be explained
in terms of only local interactions. In the context of biology, there is
an additional constraint, namely that the self-assembly algorithm does
not build in the agents unrealistic computational prowess. With
robots however, agents can be taken to be computationally strong
and no such objection stays on the way of a completely satisfying
result.

VINCENT DANOS AND FABIEN TARISSAN

Results presented here were for the most part already presented in
an extended abstract (Danos and Tarissan, 2005). Section 2 presents
the graph-rewriting grammar used in the following, while Section 3
formulates the self-assembly problem, and presents our solution. Sec-
tion 4 is new and develops a complete proof of correctness, and Sec-
tion 5 extends the protocol with alarms so as to escape potential
deadlocks and completes the correctness proof as well.

2. Graph rewriting

In order to handle graphs and the kind of local graph rewriting our
agents will perform, we introduce first a notation for graphs inspired
by p-calculus, where nodes are agents, and edges are represented by
name-sharing.

2.1. Agents and networks

Let C be a countable set of names ranged over by x, y, z, . . ., one de-
fines an agent as a finite set C � C, written [C], where the set C itself
is referred to as the agent interface. We write N for the set of agent
networks (or simply networks) defined by the following grammar:

G :¼ [j ½C� jG;Gj ðmxÞG

where [is the empty network, G1, G2 stands for the juxtaposition of
G1 and G2, and (mx)G stands for G where the name x has been made
private to G.

Networks provide a notation for undirected graphs (without loops
or multiedges): agents represent nodes, and two nodes share an edge
if the corresponding agents share a name.

Here is an example:

becomes (mx)(my)([x], [x,y], [y])

Our algebraic notation is redundant in that there are many distinct
ways to represent the same graph. The notion of structural congruence
below will take care of this redundancy.

SELF-ASSEMBLING GRAPHS

The ‘‘new’’ operator, written in symbols m, is a binder for names in
C and allows for a smooth treatment of name creation. It comes
along with the usual inductive definition of free names:

fnð[Þ ¼ [

fnð½C�Þ ¼ C

fnðG;G0Þ ¼ fnðGÞ [fnðG0Þ
fnððmxÞGÞ ¼ fnðGÞnfxg

An occurrence of name is said to be bound if not free. The operation
of renaming bound variables is often called a-conversion.

Definition 1 Structural congruence, written ” , is the smallest con-
gruence relation closed under a-conversion and such that:

1. (N = �; ‘; ’;[) is a symmetric monoid
2. (mx)(my)G ” (my)(mx)G
3. ðmxÞG � G if x j2fnðGÞ
4. (mx)G,G¢ ” (mx)(G, G¢) if x j2fnðG0Þ

It is easy to see that up to structural congruence, there is a unique
network representing a given isomorphism class of graphs. Based on
this, we will now consider graphs as networks and do not distinguish
them notationally. We also observe in passing that our notation also
accommodates the description of hypergraphs.

Structural congruence allows to handle new names with set based
notations, e.g., writing (mxy) in place of (mx)(my) or (my)(mx).

2.2. Reactions and transition systems

Now that we have our notation for graphs in place, we turn to the
definition of a notion of graph rewriting which will be expressive
enough for our needs

Definition 2 A reaction is a pair L; ðm~xÞR, also written L! ðm~xÞR,
where L = [L1], . . . ,[Ln], R = [R1], . . . , [Rn], and fnððm~xÞRÞ � fnðLÞ.

When in addition, n £ 2, the reaction is said to be local. Local reac-
tions express point-to-point communications and will be used to state
the self-assembly problem.

VINCENT DANOS AND FABIEN TARISSAN

Names occurring in a reaction fall naturally in three classes: the
names created by the reaction ~x, the names erased by the reaction
fnðLÞnfnððm~xÞRÞ, and the remainder fnðLÞ \ fnððm~xÞRÞ. The condition
in the definition above makes sure that any name occurring in R is
either created, or already occurs in L. In the following we will sup-
pose that fnðLÞ and ~x are disjoint sets; this can always be realized by
using a-conversion.

To fire a reaction ðL; ðm~xÞRÞ in a network G, one looks for an in-
stance of L in G and then replaces it with the right hand side ðm~xÞR.
More precisely, given a set of reactions R, one defines inductively a
binary relation fi R as follows:

ðDIRÞ G!r G
0 r2<

G!< G0
G1!<G2

G1;G!<G2;G
ðGROUPÞ

ðNEWÞ G1!<G2

ðmxÞG1!<ðmxÞG2

G1�G01G
0
1
!<G02 G0

2
�G2

G1!<G2
ðSTRUCTÞ

with G fi rG¢, if r ¼ ½L1�; . . . ; ½Ln� ! ðm~xÞð½R1�; . . . ; ½Rn�Þ, and there
exists an injection from fnðLÞ [~x to C such that:

G ¼ ½ ðL1Þ�; . . . ; ½ ðLnÞ�
G0 ¼ ðm ð~xÞÞð½ ðR1Þ�; . . . ; ½ ðRnÞ�Þ

One also writes G fi R
* G¢, whenever G¢ can be obtained from G by

repeatedly firing reactions in R. This includes the case when no reac-
tion is used and G¢ = G. A transition system is a pair (G0,R), where
G0 is a network, called the initial state, and R is a set of reactions. A
transition system (G0,R) is said to be local when each reaction in R is
local.

2.3. Self-assembly

Suppose now we want our agents to self-assemble according to a
given connected graph G = (V,E). Write |V| for the number of nodes
in G, []n for the network [], . . . ,[] consisting of n empty agents, and
([]n,{rG}) for the transition systems associated to G, with initial states
[]n and only reaction rG := Ææ|V| fi G.

The self-assembly problem for G is to find a set of local reactions
RG and a map h from agents to some suitable notion of enriched

SELF-ASSEMBLING GRAPHS

agents, such that for all n, the transition system (h([]n),RG) simu-
lates—in a sense yet to be defined—the original system ([]n,{rG}).

Two points need to be clarified here. First we need to explain how
to enrich agents. An enriched agent will no longer be a mere set of
names but a list of sets of names or integers. The h function above
will take care of structuring the initially empty agents according to
the enriched agent format. Second, we need a definite statement about
what we mean when we say that (h([]n),RG) simulates ([]n,{r}), and
this is where bisimulation comes in the picture.

The first point will be addressed in the course of the construction
of the local transition system (h([]n),RG) to which we turn now, while
the second will be the object of the next section devoted to correct-
ness.

3. The construction

Transition systems over enriched agents are similar to the ones de-
fined before and we don’t go over all the definitions of the preceding
section.

We proceed to our construction in two steps. First we define the
notion of a growth scenario, in essence a transition system describing
which intermediate graphs one should seek for during the construc-
tion of the target graph G. Then we obtain the corresponding local
transition system.

3.1. Growth scenarios

Agents manipulate concrete representations of graphs and we have to
be careful to distinguish these from abstract graphs. Specifically, a
concrete graph will be taken to be a graph of the form ({1, . . . ,n},E)
with n>0. The trivial graph ðf1g;[Þ will be denoted by 1. Given G a
concrete graph, we write ½½G�� for its isomorphism class, that is to say
the corresponding abstract graph. Next, we define two operations on
concrete graphs:

Definition 3 Let G1 ¼ ðV1;E1Þ and G2 ¼ ðV2;E2Þ be concrete
graphs, the join of G1 and G2 via u2V1, v2V2, written G1:u� G2:v,
is defined as:

VINCENT DANOS AND FABIEN TARISSAN

– V ¼ f1; . . . ; jV1j þ jV2jg, and
– E ¼ E1 [ffu; vþ jV1jgg [ffaþ jV1j; bþ jV1jgjfa; bg 2 E2g and the
self-join of G1 via u, v2V1, written G1.(u,v), is defined as V = V1,
and E ¼ E1 [ffu; vgg.
Note that in the binary join operation, the nodes of G2 are shifted

by |V1|, and as a consequence the result is again a concrete graph.
These two of join and self-join operations naturally extend to abstract
graphs, and they define together a partial order, written <, on con-
crete as well as on abstract graphs.

Definition 4 A growth scenario G is a set of abstract graphs such that
for all non-trivial G 2 G, either G ¼ G1:u� G2:v, for some G1;G2 2 G,
or G = G1.(u,v) for some G1 2 G.

All graphs within a scenario are connected, and conversely any
connected graph is obviously contained in some scenario.

Here is an example of a growth scenario G ¼ fG1; . . . ;G9g:

The idea is that agents wants to self-assemble to reach the target
graph G9, and G specifies all intermediate graphs they are allowed to
construct in so doing. The figure below, where nodes stand for graphs
in G, bi-edges correspond to joins, and mono-edges to self-joins gives
a visual proof that G is indeed a growth scenario. Note that we do
note require scenarios to be downward closed with respect to <, and
indeed G is not.

To each scenario G corresponds naturally a set of reactions,
denoted by <ðGÞ, obtained by translating as reactions the joins and
self-joins under which G is closed. These reactions are quite specific,
since they create only one name, and delete none. However, they are

SELF-ASSEMBLING GRAPHS

not local. If we return to the example, the bi-edge linking G1 and G2

to G3 corresponds to the following join reaction in <ðGÞ:

½x�; ½x�; ½� ! ðmyÞð½x�; ½x; y�; ½y�Þ

3.2. The local transition system

With these definitions behind us, and supposing given a target graph
G, and a scenario G with G as only maximal graph, the self-assembly
problem can now be rephrased as the problem of finding a set of
local reactions that will simulate <ðGÞ.

Let us begin with a still informal description of our algorithm and
its local reactions. Each agent has in its internal state an integer
called the role meant to describe its coordinate on the map being cir-
culated between the agents in a same component. By allowing at any
time only one agent to modify a component, we prevent concurrent
modifications of the structure. This agent is chosen to be the only one
holding a map of the current component, since only him needs it. So
to speak, the map is itself the activity token. This makes both the
internal state of an agent and the update phase simpler. Update is
then reduced to the propagation of the new role played by the agents
in the new enlarged component.

Going back to definition 3, we see that joins affect only the roles
in one of the two connected components. Therefore, role updates are
only required in one component which we take in the implementation
to be the smaller one. Second, we see also that the new role is easily
determined from the old one, since it is just a shift of the old one by
the number of nodes, say N of the other component. Agents involved
in an update phase will then simply transmit this integer N.

The case of a self-join is easier, since roles are all unchanged. Role
updates are not needed, it is just the map of the active agent which is
modified.

To avoid conflicts arising during update in case the graph is cyclic,
we use a tree spanning the component to transmit the shift. This
spanning tree is itself a dynamic structure that grows along with the
component. A new edge is added to it at each join. To reflect this
structure in their states, enriched agents partition their name set in
two classes, written, respectively, S (for span) and C (for cycles),
depending on whether the corresponding edge belongs to the

VINCENT DANOS AND FABIEN TARISSAN

spanning tree or not. Take note that this tree is undirected. The direc-
tion of transmission is also dynamically determined and varies over
time.

Following these informal explanations, we define the interface of
an enriched agent as a tuple [S,C,g,r,m] where S is a set of names
which represents neighbours in the spanning tree, C is a set of names
which represents the set of the remaining neighbours, g is a name
used as a group identifier for agents in a same component, r is an
integer referring to the role played by the agent in the component,
and m is the agent running mode:

– P when the agent is in passive mode;
– Act(G) when the agent is in active mode, with G a concrete graph;
– Up(L,N) when the agent is in update mode, with L a set of names
referring to the neighbours still to be updated, and N the shift.

This definition extends naturally to networks; we will write Nþ
for the set of enriched networks to distinguish it from the set N of
(ordinary) networks.

3.3. Local reactions

Given G a growth scenario, we may now define our family of local
reactions <lðGÞ simulating <ðGÞ.

First come the join reactions ðJoinÞG, with ½½G1:r1 � G2:r2�� 2 G:

½S1;C1;g1;r1;ActðG1Þ�
½S2;C2;g2;r2;ActðG2Þ�

!ðmxÞ
½S1þfxg;C1;g1;r1;ActðG1:r1�G2:r2Þ�
½S2þfxg;C2;g1;r2þjG1j;UpðS2;jG1jÞ�

Next come the self-join reactions ðSelfÞG, with ½½G:ðr1; r2Þ�� 2 G:

½S1;C1; g; r1;ActðGÞ�
½S2;C2; g; r2;P�

! ðmxÞ
½S1;C1 þ fxg; g; r1;ActðG:ðr1; r2ÞÞ�
½S2;C2 þ fxg; g; r2;P�

Then the update reactions (Up):

½S1;C1;g1;r1;UpðLþfxg;NÞ�
½S2þfxg;C2;g2;r2;P�

!
½S1;C1;g1;r1;UpðL;NÞ�
½S2þfxg;C2;g1;r2þN;UpðS2;NÞ�

SELF-ASSEMBLING GRAPHS

Finally we need the switch reactions (Switch):

½S1 þ fxg;C1; g; r1;ActðGÞ�
½S2 þ fxg;C2; g; r2;P�

!
½S1 þ fxg;C1; g; r1;P�
½S2 þ fxg;C2; g; r2;ActðGÞ�

This last switch reaction, which allows the activity to circulate around
in a component, can only be fired if the agents share the same group
identifier. We may also note that in the update reactions, the updated
agent simultaneously changes its role, and group, while entering him-
self in update mode. In the end-of-update reaction, the agent goes
passive because his contact list is empty. It also worth noting that in
the join reaction, one does not check that the group names g1, g2 are
distinct; there is no need to do so since as we shall prove soon, there
is at most one active agent per component, and therefore g1, g2 are
distinct (in terms of process algebras this means that one does not use
the mismatch construct).

We may now complete our definition:

Definition 5 Given a growth scenario G, one defines the local transi-
tion system associated to G as ðhð½�nÞ;<lðGÞÞ, where <lðGÞ is defined
above, and the initial state h([]n) is given by

ðg1Þ½[;[; g1; 1;Actð1Þ�; . . . ; ðgnÞ½[;[; gn; 1;Actð1Þ�

A local reaction transition system can be thought of as a p-calculus
process where interactions are allowed to match many names at once
(whereas in p only one name is matched, that of the channel being
used for sending), and information is exchanged bi-directionally
(whereas in p it is uni-directional). This additional flexibility allows
for a concise description of self-assembly, but it would be straightfor-
ward to translate our solution in p. Rather than doing this, we will
instead import the usual p bisimulation proof method in our specific
formalism.

4. Correctness

The key to proving correctness is to prove first that any active agent
always has a consistent view on its own component. That is to say,

VINCENT DANOS AND FABIEN TARISSAN

for any P such hð½�nÞ !�<lðGÞ P , and any active agent in P, the image

G, the group name g and the role r of the agent are always the actual
ones in P.

4.1. Consistent view

Let A = [S,C,g,r,m] be an enriched agent (we use the same notation
both for agents and interfaces of agents), we refer to S [C as its
edge names, we write spanðAÞ ¼ S to denote names representing its
span neighbourhood and groupðAÞ ¼ g to be its group identifier (asso-
ciated to the component it belongs to).

In order to state the consistent view property, we need to handle
formally the graph the enriched agents represent together with the
role they play in it. This leads to the notion of pointed graph (G,v)
where G is a graph and v the vertex of the root.

Definition 6 Let [S,C,g,r,m] be an enriched agent. We define the
function r from enriched agents to PðCÞ � PðCÞ �N by

rð½S;C; g; r;m�Þ ¼ ½S;C; n�

where n = 1 if the agent is active and 0 otherwise, the function v
from PðCÞ � PðCÞ �N to agents by

vð½S;C; n�Þ ¼ ½S [C�

and the forgetting function q ¼ v � r keeping only the edge names of
the interface.

These definitions extend naturally to enriched networks. We will be
only interested in enriched networks P such that r(P) denotes a poin-
ted spanned graph, that is a graph with a spanning tree for each con-
nected component (given by the set of connexions in S) and a specific
node called the root and denoted by the active agent of the compo-
nent. We write PSAG for the set of such pointed spanned abstract
graphs and ½½rðPÞ�� for the PSAG corresponding to P.

The proposition below says that if an enriched network is reach-
able from the initial state, then the underlying network is a PSAG
(condition 1), two agents sharing a common group identifier belong
to the same component (condition 2), if an agent is active then its

SELF-ASSEMBLING GRAPHS

pointed graph representation (G,r) is isomorphic to its component in
½½rðPÞ�� (condition 3) and if an agent is in update mode then each
name in the list of the agents to contact is shared with an agent in its
span neighborhood (condition 4). Note that in general the converse of
condition 2 does not hold since the group name may not have been
propagated yet to every agents of the component.

Proposition 1 (Consistency). Suppose hð½�nÞ !�<lðGÞ P, then:

1. ½½rðPÞ�� 2 PSAG;
2. For all agents A1,A2 occurring in P, if groupðA1Þ ¼ groupðA2Þ then

A1 and A2 belong to the same component;
3. For all agent [S,C,g,r,Act(G)] occurring in P, (G,r) is isomorphic to

its component in ½½rðPÞ��;
4. For all agent [S,C,g,r,Up(L,N)] occurring in P;L � S, and for all x

in L, there exists another agent A occurring in P such that
x 2 spanðAÞ.

4.2. Proof

By induction on the rules of <lðGÞ. The initial case is obvious since all
the agents are active, disconnected, possess a different group identi-
fier, own the initial graph 1 and play the only role possible in it. Sup-
pose now that hð½�nÞ !�<lðGÞ P!

r
<lðGÞP

0. The inductive step depends on
the rule r applied:

(Join): Let A1 = [S1,C1,g1,r1,Act(G1)] and A2 = [S2,C2,g2,r2,
Act(G2)] be the two agents involved by r. Since ½½rðPÞ�� is a PSAG and
the two agents are active in P, it follows that they belonged to dis-
joints components. Then adding a name in the span neighborhood
preserves the spanning structure. As only one agents remains active,
we can conclude that condition 1 is preserved. Besides, this condition
ensures also that for all name x in S2, there exists a single agent A in
P¢ such that x 2 spanðAÞ. Thus, A2 verifies condition 4 in P¢. By 3, we
have that (G1,r1) and (G2,r2) are in accordance with the role they play
in the component. Going back to definition 3, we see that the new
image G1:r1 � G2:r2 precisely adds an edge between the nodes r1 and
r2 and that the role of the vertex r1 is unchanged. Thus the remaining
active agent A1 has still a consistent view ðG1:r1 � G2:r2; r1Þ of its
component in P¢ (condition 3). Finally, condition 2 is true since the

VINCENT DANOS AND FABIEN TARISSAN

only group identifiers newly equalized are the ones of A1 and A2

which are now connected.
(Self): This rule adds a cycle in the graph but the spanning struc-

ture is kept unchanged as well as the activity. Since ½½rðPÞ�� was a
PSAG (conditions 1), we deduce that this holds also for ½½rðP0Þ��.
Using a similar argument as the one in the previous case, one sees
that the active agent concerned by r still verifies condition 3. Condi-
tions 2 and 4 are not affected by the rule.

(Up): Only conditions 2 and 4 are concerned by the rule. The
group identifier is changed for the receiver but condition 4 ensures
that it belongs to the same component. As for the (Join) case, the
fact that ½½rðPÞ�� was a PSAG ensures that this agent satisfies now con-
dition 4. This condition also holds by induction for the sender as its
set is decreased by the rule.

(End): Nothing changes except for the internal state of one agent
entering a passive mode. All the conditions are satisfied by induction.

(Switch): The rule asks for the concerned agents to share a com-
mon group identifier. By condition 2 they belong then to the same
component. Besides, as the shift of the role of an agent is transmitted
at the same time as the group identifier, it follows that the role of the
receiver corresponds indeed to its role in the component. Thus the re-
ceiver has a correct representation of the component and of the role
it’s playing in it (condition 3). The other conditions are not affected
by the rule.

The second property one would like to check is that the enriched
network only build graphs allowed by the scenario. Formally:

Proposition 2 (Forward correctness). Let P be an enriched network.
If hð½�nÞ !�<lðGÞ P, then ½�n !�<ðGÞ ½½qðPÞ��.

Proof By induction on the length of the sequence leading to P. The
initial case is clear since qðhð½�nÞÞ ¼ ½�n. Suppose now that
hð½�nÞ !�<lðGÞ P!

r
<lðGÞP

0. We reason by case on r.

If a connection is created then the agents involved by the rule had
a consistent view in P of the component they belonged to (by condi-
tion 3 of proposition 1). The conditions required for the rule to be
applied, namely ½½G1:r1 � G2:r2�� 2 G for (Join) and ½½G:ðr1; r2Þ�� 2 G for
(Self), ensure explicitly that a binary join or a unary join can be trig-
gered in ½½qðPÞ�� leading to ½½qðP0Þ��.

SELF-ASSEMBLING GRAPHS

If no creation is created, then the rule don�t modify the structure
of the components and ½½qðP0Þ�� = ½½qðPÞ��.

4.3. Bisimulation

Now we are ready to explain in which sense our local transition sys-
tem, <lðGÞ, behaves as the global one, <ðGÞ. This asks first for defin-
ing a relation between the states of the two systems.

For any reaction r in <ðGÞ, write Inter (r) for the set of joins or
self-joins in RlðGÞ corresponding to r.

Definition 7 ðRelation 	GÞ. The rules

ðInitÞ ½�n 	G hð½�nÞ

ðInterÞ
S 	G T S!s <ðGÞS0 T!

t
<lðGÞT

0 t 2 InterðsÞ
S0 	G T0

ðInvisÞ
S 	G T T!t <lðGÞT

0 t 2 Up; End; Switchf g
S 	G T0

inductively define a binary relation 	G on N �Nþ.
Notice that the relation preserves the correspondence between net-

works exhibiting the same underlying graphs.

Proposition 3 If P 	G P0, then ½½P��. ½½qðP0Þ��:

Proof Straightforward induction on 	G.

Then, we use the traditional notion of bisimulation (Milner, 1999)
to compare the behaviors of the two systems. If S ¼ ðP0;<Þ is a tran-
sition system, we write seðSÞ ¼ fPjP0 !�< Pg for the set of its reach-
able states.

Definition 8 Two transition systems S ¼ ðP0;<Þ and S0 ¼ ðP00;<0Þ are
bisimilar if there exists a binary relation 	 over reðSÞ � reðS0Þ such
that P0	 P¢0 and whenever P 	 P¢:

– if P fi RQ, then there exists Q¢ such that P0 !�<0 Q0 and Q 	 Q0;
– if P!<0 Q0, then there exists Q such that P!�< Q and Q 	 Q¢.

VINCENT DANOS AND FABIEN TARISSAN

The rest of this section is devoted to proving 	G is bisimulation.
Note that the obtained property is slightly more general than the one
we wanted, since it does not assume that there is a unique maximal
graph in the scenario G.

The first condition is ensured by the (Init) rule. The only diffi-
culty which remains here is that the enriched network may not be
able to simulate immediately an interaction rule because updates may
not have been transmitted to the concerned agents yet. To handle this
case, we define for every enriched network P the cleaned state of P
(written clðPÞ) as the network obtained by repeated applications of
(Up) and (End) rules.

Definition 9 (Cleaning the system). Let P be an enriched network.
We define clðPÞ as the network verifying:

– P!� clðPÞ using only rules (Up) and (End);
– 8r 2 fUp; Endg8P0 clðPÞ !pr P0.

Note that the system is locally confluent since updating an agent
does not prevent the application of another updating rule. Moreover,
it follows from conditions 1 and 4 of proposition 1 that the structure
used to transmit the update is a tree, ensuring in particular that there
is no loop. Since the set of agents to contact is decreasing while using
the rules, the process terminates. We deduce that the system is conflu-
ent and that cl defines a unique clðPÞ.

Of course, as we already noticed these steps of computation don’t
change the underlying graphs neither the images carried by the
agents. Clearly by rule (Invis):

Lemma 1 If P 	G Q, then P 	G clðQÞ.

Finally, we present and prove our main result:

Theorem 1 (Correctness). For all n and all growth scenarios G, the
global and local transition systems, ð½�n;<ðGÞÞ and ðhð½�nÞ;<lðGÞÞ, are
bisimilar.

Proof We prove that 	G is a bisimulation. The first condition is
directly satisfied by the rule (Init).

Suppose now that P 	G Q and that P!r <ðGÞP0 for some r and P¢.
By lemma 1 we have that P 	G clðQÞ. Depending on whether the

SELF-ASSEMBLING GRAPHS

active agents in clðQÞ are the ones concerned by r or not, the sys-
tem clðQÞ may have to use the (Switch) rule to pass the token to
the concerned agents, leading the system to Q¢. By (Invis), P 	G Q0
and then by proposition 3 it follows that P and Q¢ have the exact
same graphs. Now there is a rule r¢2 Inter(r) which can be applied
to Q¢ leading to Q¢¢ and P0 	G Q00 by application of the rule
(Inter).

Conversely, suppose that P 	G Q and Q!r <lðGÞQ
0 for some r and

Q¢. We show that there exists P¢ such that P!�<ðGÞ P0 and P0 	G Q0
by reasoning on r:
– r2 Inter(r¢): This is a consequence of proposition 3. Since they exhi-
bit the same graphs, r¢ can be triggered in P leading the system to
P¢. Then we prove that P0 	G Q0 by application of the rule (Inter).

– r 2 fUp; End; Switchg: We take P¢ = P and we conclude with an
application of the rule (Invis).

5. Escaping deadlocks

The local transition systems defined above are monotonic in the sense
that edges can only be added. Different components representing par-
tially grown target graphs could compete and be deprived of re-
sources.

Klavins suggests a simple timeout method to grow, starting with a
given population of agents, the maximum possible number of copies
of the target graph. We incorporate now an abstract version of this
deadlock escape mechanism in our algorithm.

First we extend our notion of growth scenario by allowing each
connected component to dislocate in one step, defining thus an ex-
tended global transition system <eðGÞ. Second, we introduce a new
alarm mode, written Al. And third, we add the accompanying reac-
tions, starting with the breaking-loose reactions (Break):

½S;C; g; r;ActðGÞ� ! ½S;C; g; r;Al�

and the alarm propagation reactions (Prop):

½S1 þ fxg;C1; g1; r1;Al�;
½S2 þ fxg;C2; g2; r2;
�

!
½S1;C1; g1; r1;Al�;
½S2;C1; g2; r2;Al�

VINCENT DANOS AND FABIEN TARISSAN

½S1;C1 þ fxg; g1; r1;Al�;
½S2;C2 þ fxg; g2; r2;
�

!
½S1;C1; g1; r1;Al�;
½S2;C1; g2; r2;Al�

and finally the alarm-end reactions (EndAl):

½[;[; g; c;Al� ! ðmgÞ½[;[; g; 1;Actð1Þ�

Note that one has two reactions to propagate the alarm depending on
whether the alarm is shipped along the spanning tree or not. There
are no longer any conditions on g2 and r2, since consistency is lost
during dislocation. An agent goes active again only when it has bro-
ken all connections and spread the alarm to all its neighbours. Thus,
active agents still view correctly their components.

The correctness of this extended algorithm is based on the one gi-
ven Section 4. Specifically, if we call <alðGÞ the system of rules based
on <lðGÞ with the addition of the three rules above, one would like to
show that ð½�n;<eðGÞÞ and ðhð½�nÞ;<alðGÞÞ are bisimilar.

We won’t rehash here all the proofs we made earlier but only
give the minimal definitions and reformulations of the main proper-
ties in order to handle the new situation. The main point will be
to keep the same correspondence as before between the two net-
works as long as no dislocations are engaged in the enriched one.
As soon as an alarm propagates, we consider the component as
lost.

Definition 10 (Stabilizing the system). Let P be an enriched network.
We define stðPÞ as the network verifying:

– P!� stðPÞ using only rules (Prop) and (EndAl);
– 8r 2 fProp; EndAlg 8 P0stðPÞ !pr P0.

Since a name is erased from the edge set as soon as it is used to
propagate the alarm, the set of agents to contact decreases and that
the agent cannot be forced to enter the alarm mode again when it has
finished. As for definition 9, this operation on enriched network is
confluent. Besides, since an alarm is triggered only by active agents, if
an agent is active, then no alarm is running in its component and the
agent still has a consistent view of it. Thus for any enriched network
P, stðPÞ satisfies the conditions of proposition 1.

It remains now to exhibit as before a bisimulation between the two
networks able extend the theorem 1 to include the case of dislocation.

SELF-ASSEMBLING GRAPHS

This new relation, namely 	al
G , will be built on 	G by adding a rule

ðRestartÞ which states that in case of dislocation, one forgets all the
connections of the component and considers the agents as discon-
nected and active again.

Definition 11 The rules

½�n 	al
G hð½�nÞ

S 	al
G T S!s <ðGÞS0 T!

t
<alðGÞT

0 t 2 InterðsÞ
S0 	al

G T 0

S 	al
G T T!t <alðGÞT

0 t 2 Up [End [Switch [Prop [EndAlf g
S 	al

G T 0

S 	al
G T T!t <alðGÞT

0 S0 ¼ stðT 0Þ t ¼ Break

S0 	al
G T 0

inductively define a binary relation 	al
G on N �Nþ.

It is now easy to see that this relation is actually a bisimulation. It
is enough to notice that as soon as a connected component has begun
to dislocate, it has no choice but keeping breaking all the connections
before becoming active again.

Theorem 2 (Correctness). For all n and all growth scenarios G, the
global and local transition systems, ð½�n;<eðGÞÞ and ðhð½�nÞ;<alðGÞÞ, are
bisimilar.

As a corollary we obtained a complete solution of the self-assem-
bly problem for G.

Corollary 1 For all n, all graphs G and all growth scenarios G having
G as top element, the original and local transition systems, ([]n,{rG})
and ðhð½�nÞ;<alðGÞÞ, are bisimilar.

Proof One can always simulate the step []|V| fi G by dislocating as
many components not isomorphic to G as needed to use the agents
according to a chosen path in G leading to G.

VINCENT DANOS AND FABIEN TARISSAN

6. Conclusion

We have presented an abstract self assembly protocol by which a
population of autonomous agents can grow an arbitrary network of
connections in a distributed way. The target network is built incre-
mentally. In any given connected component, a map of the current
component circulates between the agents allowing them to make
decisions concerning whether an edge should be added and where.
One specificity of our approach is to cast the problem in the language
of concurrent processes, actually in a simplified version of p-calculus,
and be able to subsequently give a precise statement of the correct-
ness of the proposed protocol.

Algebraic approaches have a tradition of providing tools easing
the definition of properties on complex systems. Doing so it gives also
a better intelligibility of the studied mechanism. In our case, we ex-
tracted a sub-language in which we restricted the communication abil-
ities. Solving the self assembly question was then defined as being
able to translate any system in the general framework into the core
one without modifying the general behavior of the system. The notion
of ‘‘same behavior’’ is carried by the bisimulation. This allows to
express directly the problem of self assembly into the language of
description itself and to prove that a given protocol solves indeed the
problem without burdening with other aspects. Thus more than the
algorithmic solution presented here, it is the general framework pro-
vided which is worth to be reused. The effort made to describe a
given system into this particular language is paying off by the mathe-
matical tool allowing to prove the correctness.

An implementation of the protocol extended with an alarm propa-
gation mechanism avoiding deadlocks is available online.1 One may
wonder whether there are means to escape deadlock other than the
method used here. The problem is related to programming the back-
ward behavior of the agents. In particular it requires synchronizations
erasing connections while preserving a consistent view of the compo-
nent the agents belong to. A general backtracking strategy has been
investigated in Danos et al. (2005) where a subtle backtracking mech-
anism is proposed for the language of description itself. This allows
to let the question of deadlocks aside when programming and gives a
correctness of the general mechanism which does not need to be rein-
vented for each application.

SELF-ASSEMBLING GRAPHS

The self-assembly protocol was inspired by self assembly questions
in biological systems. Although we assumed computationally strong
agents, we took care to keep their internals and interaction capacities,
as embodied by the local reactions, to a minimum. It is agreed that
they are still way stronger than anything that could be implemented
today in the combinatorics of molecular biology. Nevertheless explor-
ing such self-assembly procedures could help in building a working
engineering intuition of biological self assembly.

7. Note

1. http://www.pps.jussieu.fr/�tarissan/self

References

Danos V, Krivine J and Tarissan J ‘Self Assembling Trees’. In: Proceedings of the 2005
Artifical Evolution Conference (to appear)

Danos V and Laneve C (2003) ‘Core formal molecular biology’. LNCS 2618: 302–318

Danos V, Laneve C (2004) ‘Formal molecular biology’. Theoretical Computer Science
325(1):69–110

Danos V and Tarissan F (2005) ‘Self assembling graphs’. LNCS 3561: 498–507
Drexler E and Smalley R (2003) ‘Controversy about molecular assemblers’. Available at

www.foresight.org/NanoRev/Letter.html
Hasty J, McMillen D and Collins JJ (2002) ‘Engineered gene circuits’. Nature 420: 224–

230

Klavins E (2002) ‘Automatic synthesis of controllers for assembly and formation
forming’. In: Proceedings of the International Conference on Robotics and Auto-
mation

Milner R (1999) Communicating and mobile systems: the p-calculus. Cambridge Uni-
versity Press, Cambridge

Nagpal R (2002) ‘Programmable self-assembly using biologically-inspired multiagent

control’, In: Autonomous Agents and Multiagent Systems Conference (AAMAS)

VINCENT DANOS AND FABIEN TARISSAN

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

