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Available online 3 May 2013 between routers. This approach does not take into account point-to-multipoint connec-

tions that exist at lower layers in the network, e.g. layer-2 clouds, such as Ethernet
switches or MPLS networks. Instead, such physical point-to-multipoint connections are

;\(lgtvvzrris;topology modeled as several logical IP level point-to-point connections.

Measurement In this paper, we rely on recent developments in topology discovery based on IGMP
Bipartite modeling probing that allows for revealing part of the network’s layer-2 structure. We take
mrinfo advantage of this additional knowledge for proposing an Internet model based on bipar-

Topology generator tite graphs considering both point-to-point and point-to-multipoint connections. Our
model remains simple: it only takes as input the node degree sequence for both
layer-2 and layer-3 nodes, randomly generates a bipartite graph respecting those distri-
butions, and then derives the corresponding layer-3 topology. We show that, despite the
simplicity of our model, realistic network properties, such as high local density, emerge
naturally. This is in contrast with the now common belief that such properties can only
appear with more intricate models or if explicitly injected in random models. Besides,
we also provide evidences of how the analysis performed at the bipartite level might
shed light on important properties of the real network structure. Finally, we propose
and evaluate a bipartite graph generator based on our model that only takes two syn-
thetic node degree distributions as input.
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1. Introduction hance their reliability and efficiency. It also allows for
designing effective network protocols matching the spe-

Improving our understanding of the Internet topology cific requirements of a large panel of applications. Assess-
structure is extremely important. It has much impact on ing the quality of a network or protocol design involves
the ability to provision and manage IP networks and en- theoretical studies and simulations conducted on artificial

graphs obtained from models of the Internet topology.
Many efforts have been made in modeling Internet [1,2],
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Usually, the Internet is depicted as a simple graph
where vertices represent, depending on the Internet topol-
ogy view, IP interfaces, routers, or autonomous systems
(ASes) and edges stand for direct connections between
those vertices. In particular, when considering the router
level view of the Internet, edges usually represent point-
to-point links between routers, i.e., IP hops. However, the
Internet is actually made of fundamentally different kinds
of nodes at layer-2 (L2), which induce its layer-3 (L3) struc-
ture: routers might be connected through L2 devices such
as Ethernet switches, IXPs, sub-networks, etc. and a L3 link
between two routers goes therefore through a L2 device.
Multiple routers connected through a single L2 device will
appear as a possibly large clique of separate point-to-point
links in a layer-3 view. The underlying point-to-multipoint
connections are generally invisible because they are chal-
lenging to discover when using ordinary active topology
discovery techniques based on traceroute [9].

Being able to map Internet topologies exhibiting the
two layers of connection would open new perspectives in
Internet modeling and topology generation. Indeed, one
could then model the Internet topology as a bipartite graph,
i.e., a graph in which vertices can be divided into two dis-
joint sets, T (e.g., Ethernet switches) and L (e.g., routers),
such that every edge connects a vertex in T to one in L.
Bipartite graphs are a fundamental object in computer sci-
ence and, as such, are widely studied [10-12]. A key oper-
ation over bipartite graphs is the projection that transforms
the bipartite structure into a simple graph where a link be-
tween two routers in L exists if they are linked to a same
L2 device in T. Interestingly, the projection fits exactly the
inference of the Internet L3 topology from its L2 topology.
This makes bipartite graphs (and their projection) an
appealing approach for Internet topology modeling with
a L2/L3 view.

Fortunately, a recent advance in Internet topology dis-
covery through IGMP probing [13] has offered an opportu-
nity to better characterize the nature of IP connections
(point-to-point or point-to-multipoint). With a single
IGMP probe, one can obtain all local multicast interfaces
and neighbors of a multicast router, as well as its multicast
connections through L2 multi-access networks. This latter
feature provides point-to-multipoint connections between
L3 devices. Considering a map resulting from IGMP probing
[6], we are able to construct a bipartite graph where verti-
ces belong to one of these two types.

It is worth noticing that IGMP data allows one to easily
discover the actual bipartite shape of the Internet induced
by the interactions between L2 and L3 devices. Generally,
such a bipartite structure is artificially generated to cap-
ture some clustering properties in flat network ground
measurements [14]. This is not our approach here since
we stick to the existing bipartite structure detected by
the measurement tool. Interestingly enough, some IP net-
work protocols are aware of such a physical distinction.
An example is the OSPF routing protocol [15]. OSPF routers
describe the network topology using Link State Advertise-
ments (LSAs). Separate LSAs are used to represent different
kinds of links: Router LSAs are dedicated to outgoing links
of L3 nodes while Network LSAs represent outgoing links of
transit L2 networks. IGMP probing offers an abstraction of

the same bipartite view as OSPF: when several IP neigh-
bors are seen through the same IP interface, one may de-
duce the presence of a transit L2 device.

Such a view is necessary to understand the actual (e.g.,
physical) nature of IP networks. If one wants to determine
the actual physical degree of routers [6] or measure the
physical resiliency of a network [13], it is mandatory to
avoid the confusion between logical and physical connec-
tions. For example, a clique between routers appears much
more resilient than a star inter-connection. Common graph
properties such as the clustering coefficient are also im-
pacted according to the nature of the network view [16].
Further, recent works have provided evidences that real
network topologies are far from random and are often
due to strong constraints [4]. A bipartite vision of the net-
work would allow for identifying which aspects of the real
network might stem from random processes and which
ones are due to strong designed patterns.

In this paper, we step into the breach opened by the L2
devices inference and describe the first bipartite model of
the Internet topology. Our model has the strong advantage
of being “simple”, i.e., it is a random-based model that does
not require injecting several constraints. As input, we only
consider the node degree distribution of both L2 and L3 de-
vices for generating the random bipartite graph and, then,
project this structure into a simple graph. To this regard,
our model can be seen as an extension of the standard con-
figuration model [17-19] using two distinct degree se-
quences instead of one.

Note that our model does not aim at identifying net-
work construction mechanisms as would do a structural
model [20,21], a preferential attachment model [22,23],
or an engineer-oriented model [4]. If such approaches
may bring interesting knowledge on the networks emer-
gence (although they are often criticized, see [16]), they
are usually not well suited for formal analysis and they
tend to enforce specific properties in the generated graphs.
This is why we rather follow the tradition of random mod-
els [3,17,24].

In order to assess the relevance of our model, we per-
form two different analyses. First, we demonstrate that
the resulting projected graphs have behaviors similar to
those of actual ones, specially regarding metrics that were
not injected in the model, such as the local density or the
degree correlations for instance. Indeed, it is worth notic-
ing that standard models usually only reproduce proper-
ties they focus on but are unable to cope with all other
features. On the contrary, our model is able to capture a
range of characteristics that goes beyond the simple degree
distribution it relies on. In order to emphasize this point
and better evaluate the improvements brought by our
bipartite model, we confront our results with random
graphs directly generated with the configuration model
from which our model derives. It results that, as expected,
the configuration model is unable to cope with other prop-
erties than the degree distribution. Second, we evaluate
different metrics on the bipartite structure itself and give
evidences of the relationship between the observed bipar-
tite properties and the projected ones. Our analyses show
that, although not perfectly reproducing the real data,
our model succeeds in capturing most of its properties
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1.1.0.2 [version 12.4]
1.1.0.2 — 1.1.0.1 [1/0/pim/querier]
1.1.2.3 — 1.1.2.1 [1/0/pim/querier]
1.1.2.3 — 1.1.2.2 [1/0/pim/querier]
1.1.3.1 — 0.0.0.0 [1/0/pim/leaf]

Fig. 1. mrinfo example.

and provides mathematical tools for explaining properties
of the L3 structure from the analysis of the bipartite
structure.

Analyzing the limitations derived from our first study,
we also explore possible extensions to our model. First,
we investigate the interest of taking into account the cor-
relation between point-to-point and point-to-multipoint
connections of the routers. Second, using statistical metrics
defined at the bipartite level, we identify strong redundant
patterns and propose a way to cope with such a structural
property in the model. Indeed the overlapping between
L2-L3 connections is frequent in real IP networks since
redundancy is a key feature to increase the reachability be-
tween networking devices. Such resiliency patterns cannot
be accurately revealed using a L3 view only.

We finally present and evaluate a network topology
generator that is based on our bipartite model. The gener-
ator goes beyond the model in that it does not rely on pre-
scribed degree sequences but rather random ones. The
current version of the generator draws the bipartite nodes
degree from two distinct power-law distributions. We
evaluate our generator and show that even with synthetic
degree sequences, the underlying bipartite model still pro-
duces projected graphs exhibiting realistic properties. Our
generator is freely available at https://code.google.com/p/
py-bipartite/.

The remainder of this paper is organized as follows:
Section 2 discusses the background required throughout
this paper; Section 3 presents the methodology we fol-
lowed when modeling the network as a bipartite graph
and evaluates our model; Section 4 discusses the limits
of our model and investigates which additional constraints
could lead to better results; Section 5 describes and evalu-
ates our topology generator; finally, Section 6 concludes
this paper and lays some foundations for future works.

2. Background

In this section, we introduce the required background
for the remainder of the paper. First, we focus on mrinfo
(Section 2.1), a tool allowing for silently revealing all mul-
ticast IP addresses of a router, as well as its connections to-
wards other routers and L2 devices. Second, we discuss
bipartite graphs (Section 2.2) that are used for modeling
topology data collected with mrinfo.

2.1. IGMP probing

mrinfo messages use the Internet Group Management
Protocol (IGMP [25]). IGMP was initially designed to allow
hosts to report their active multicast groups to a multicast
router on their LAN. However, the Distance Vector Multi-

cast Routing Protocol, DVMRP, has defined two special
types of IGMP messages that can be used to monitor rou-
ters [26]. Although current IPv4 multicast routers do not
use DVMRP anymore, they still support these special IGMP
messages. Upon reception of an IGMP ASK_NEIGHBORS
message, an IPv4 multicast router replies by sending an
IGMP NEIGHBORS_REPLY message that lists all its multi-
cast enabled adjacencies. Fig. 1 shows an example of the
usage of mrinfo to query the router R, (1.1.0.2 is the
replying interface of R;). mrinfo reports that this router
is directly connected to R (through interface 1.1.0.1) via
a layer-3 (L3) point-to-point link. One can also notice that
R, is connected to routers Rs and Rg through a layer-2 (L2)
network (labeled “switch” in Fig. 1) because interface
1.1.2.3 appears twice in the mrinfo reply (see bold text
in Fig. 1). Finally, mrinfo reports that interface 1.1.3.1
has no multicast router neighbor (the right IP address is
equal to 0.0.0.0). All this topological information is ob-
tained by sending a single IGMP message. mrinfo provides
information similar to a show command dedicated to the
multicast routing plan.

In the analysis provided in this paper, the inference of
L2 networks is critical. In our context, by L2 network, we
mean a technology allowing a router to transmit [P packets
to several other IP routers through the same interface, i.e.,
a multi-access network. One often distinguishes between
Non Broadcast Multiple Access (NBMA) networks (e.g.,
ATM, Frame Relay, X25), and broadcast networks (BN) such
as most LAN networks (e.g., Ethernet, token ring, FDDI).

These two kinds of networks behave differently as far as
IP multicast is concerned. In particular, when using Proto-
col Independent Multicast (PIM) as a routing protocol in a
BN, only one of the PIM IP neighbors is elected as the que-
rier [27]. Moreover, in common BN such as L2 Ethernet
switches, the IP view around the L2 device should exhibit
symmetric properties and reveals that IP interfaces in-
volved in this symmetric point-to-multipoint connection
are allocated within a tight subnet prefix. In NBMA net-
works, IP packets are usually transmitted via circuits that
behave as a collection of point-to-point or point-to-multi-
point connections. Such properties can be easily revealed
within the mrinfo range: in this paper, we focus on most
common BN such as L2 Ethernet switches. These represent
the vast majority of multi-access networks in the mrinfo
dataset that we use.

Since May 1st, 2004, we collect the mrinfo data from a
host located at the University of Strasbourg, France. In this
paper, we consider the data collected until October 31st,
2008. The collection script maintains a list of known mul-
ticast routers. Each day, it sends an IGMP query to each of
these routers to collect their list of interfaces. If a new rou-
ter is discovered in a received answer (in the list of
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Fig. 2. Example of bipartite graph and its {T, L }-projections.

outgoing interfaces of an already known router), this rou-
ter is also queried in turn. These recursive queries stop at
unresponsive routers or when all known routers have been
queried. Each router is queried at most once per day. Addi-
tional information about the collection script and the raw
mrinfo dataset may be found in [28].

On average, mrinfo was able to daily discover roughly
10,000 different routers while scanning 100,000 interfaces,
and 1000 ASBRs belonging to 200 ASes. The largest con-
nected component consists in 7000-8000 routers on aver-
age. We remove interfaces with nonpublicly routable IP
addresses (see RFC 3330 [29]), loopback address block
127.0.0.0/8 and the 0.0.0.0 address. We also remove all
multicast tunnel interfaces to focus on actual physical
links. On average, more than 25% of the interfaces collected
by mrinfo fall within those categories.

Finally, we extracted L2 nodes based on the three fol-
lowing rules [6]:

e Symmetry rule. All routers attached to the potential L2
network should have the same view. In Fig. 1, router
R, is connected to Rs and Rg through a L2 device. When
probing Rs and Rg with mrinfo, R, must also appear in
their mrinfo output.

Querier rule. In a normal case, only one router per L2
network must be tagged as the IGMP “querier” (i.e., it
won the querier election on the subnet [27]: it has the
greatest IP address on the subnet). For instance, in
Fig. 1, as interface 1.1.2.3 of R2 is tagged as “querier”,
interfaces 1.1.2.1 of Rs and 1.1.2.2 of Rg should not be
tagged as such.

Subnet mask rule. The validity of the minimum mask
covering all IP addresses in the subnet is verified.

It is worth noticing that obtaining L2 and L3 topologies
is also possible using Gunes and Sarac’s subnet inference
technique [30]. We believe that the framework provided
in this paper can also be applied on Gunes and Sarac’s
dataset.

2.2. Bipartite graphs

A bipartite graph is a triplet G= (T, L, E), where T is the
set of top nodes, L the set of bottom nodes,and E C T x L
the set of links. Compared to standard graphs, nodes in a
bipartite graph are in two disjoint sets, and the links are al-
ways between a node in one set and a node in the other set.
An example of bipartite graph is given in Fig. 2a, where T
nodes are depicted by squares and L nodes by circles.

The L-projection of G is the graph G, =(L, E,) where
two nodes (of 1) are linked together if they have at
least one neighbor in common (in T) in G: E, ={(u, v),
Jxe T: (u, x) e E and (v, x) € E}. The T-projection is de-
fined dually. Both projections are illustrated in Fig. 2b
and c.

Note that bipartite graphs are very close to hypergraphs
which also model one-to-many relationships by represent-
ing hyper-links as sets of nodes instead of using a new kind
of nodes. As such, hypergraphs are in complete bijection
with bipartite graphs, the only difference being that bipar-
tite graphs allow to explicitly exhibit the hyper-links be-
tween the nodes. The directed hypergraphs are good
models for one-way one-to-many links such as radio links
(see for instance [31,32]) but in our case we are interested
in a model of the (wired) core of the Internet where the
connections are bidirectional. This is why we do not need
directed hypergraphs. Besides, the bipartite model follows
more closely the actual physical architecture than an
hypergraph model: Firstly, a Layer-2 node (typically, a
switch) is a single point of failure as much as a Layer-3
node (router) and it is very interesting to have the same
representation of these 2 types of nodes. Secondly, a link
connecting a Layer-2 and a Layer-3 node has a physical
existence which allows to study the impact of its failure,
since it is represented by a single edge in the bipartite
graph. This type of link is not directly represented in an
hypergraph model. For all those reasons, we decide to rely
on the bipartite formalism instead of hypergraph in the
rest of the paper.

2.2.1. Classical analysis over projections

In order to analyze this bipartite structure, it is natural
to transform a bipartite graph into one of its projection in
order to compute standard metrics defined for graphs. Let
us recall briefly here those metrics and the usual properties
shared by real-world networks [10].

Let G=(V, E) be the (projected) graph. We denote by
N(v) the set of neighbors of ve V: N(v)={u eV, (u, v) € E}
and by d(v) its degree: d(v) = [N(v)|.

The usual statistics used to characterize such a graph
involve its size (n=1V|), its number of links (m = |E|), its
highest degree (d*=max, d(v)), and its average degree
(k =2m). Over those notions, one can also study the den-
sity 6 = n_(zrfj’w that is usually small as real networks happen
to be very sparse. Indeed the probability that a link exists
between two randomly selected nodes is generally very
small.
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On the contrary, two nodes sharing a common neighbor
have usually a high probability to be linked. This property
is often referred to as the local density and is generally cap-
tured by the clustering coefficient and the transitivity ratio
[10,33,34]. The first one computes, for every node veV,
the probability that two of its neighbors are linked to-

gether. This is denoted by cc(v) = LZ; where A(v) is the
number of triangles (sets of three nodes with three links)
to which v belongs and V(v) = 42@»-1 the number of
pairs of neighbors of z. The clustering coefficient of the

graph is the average value cc = w

The second coefficient, the transitivity ratio, provides a
more direct computation of the property over the whole
graph. Let 4 =3 4(v) and v =3,V (v), then tr =34 is
defined as the transitivity ratio of G.

A classical observation is that those two quantities are
high, at least compared to the density. In other words, if
one selects a random pair of links with an extremity in
common (transitivity ratio) or a random node and two of
its neighbors (clustering coefficient), then the probability
that the third possible link exists is high.

2.2.2. Specific metrics for bipartite graphs

The metrics defined in Section 2.2.1 have the advantage
to be well understood and allow for immediate analysis of
the flat topology. On the other hand, the required projec-
tion leads to a loss of information. It is thus necessary to
define extensions of those metrics on the bipartite struc-
ture itself.

From a bipartite graph G=(T, L, E) and for each top
node v € T, we denote by N+(v) the set of bottom neigh-
bors of v: Nr(v)={uec L, (u, v)€E} and by N,N.(v) the
set of top neighbors of v: N,N+(v)={u# ve T,3xe L: (u,
x) € E and (v, x) € E}. We use similar notations for the bot-
tom nodes N,(v) and N+N,(v). For instance, on Fig. 2a,
N+(1)={A, B, C} and N,N(1)={2,3}. Similarly,
N,(C)={1,2,3}and N;N,(C)={A, B, D, E}.

Let n+ (respectively n,) be the number of T (respec-
tively L) nodes and m,;, be the number of bipartite links.
We denote by k- (respectively k, ) the average degree of T
(respectively L) nodes and 0y, = bnp the density of the
bipartite graph. In Fig. 2a, ny=4,n, =6, k+=2.5, k, =1.6,
Myip =10, and d,;, = 0.42.

Those statistics are natural extensions of graph metrics.
However, for the local density, there is no standard variant
since, by definition, there is no triangle in a bipartite graph.
As suggested by Latapy et al. [35], we will rely on the fol-
lowing coefficient that tends to capture the overlapping
between the neighborhood of two nodes of T

N+ (u) N N+ ()|

cc T(U,U):m. (1)

This coefficient is interesting as it captures the relative
overlap between neighborhoods of top nodes, i.e., cc(u, v)
is equal to 1 if the neighborhood of u and » intersects ex-
actly, to O if they do not share any neighbor. If we apply
the overlapping coefficient on nodes 1 and 2 in Fig. 2a,

AB,.Cin{B,CD
we have cc 1(1,2) = {aEEi2edl — 0.5.

From this coefficient, it becomes natural to define the
clustering coefficient related to a specific T node 7. This
is given by

ZUENLNT(U) ce T(u7 Zj)
INLN+ ()|

Applied on node 1 of Fig. 2a, it gives cc+(1) = 0.375. This
coefficient enables to study the distribution of this prop-
erty over the top nodes as well as its correlation with the
degree or other properties. Then, one can naturally com-
pute the bipartite top clustering coefficient ccy of G as the
average value of cc(v) over all the nodes v of T. More
formally

ce 1( |_|_|ch T (3)

veT

ce t(v) =

(2)

Following those definitions, we can derive the dual
cc,(G) bottom clustering coefficient of G which finally
leads to the global clustering coefficient of G defined by:

nrce 7(G) +nyce 1 (G)

nr+n;

(4)

ce pip(G) =

3. Model

In this section, we explain how we model a subset of the
router level topology as a bipartite graph. We explain our
approach (Section 3.1) before evaluating it (Sections 3.2
and 3.3).

3.1. Methodology

Our methodology is sketched in Figs. 3 and 4. We first
start by removing loops! in our dataset (“cleaning step” in
Fig. 4). We then have a dataset that contains a set of L3 de-
vices (routers) and L2 devices (typically switches) with links
between them and among routers (see Fig. 3b). Because of
these point-to-point links between routers (between R,
and R; in this example), this is not a pure bipartite graph,
as defined in Section 2.2. However, there is no difference be-
tween a point-to-point link and a pair of routers connected
through a L2 device? that itself is connected only to these
two routers. In Fig. 3b, the direct link between R, and R3
can be replaced by a L2 device of degree 2 linking only R,
and R; (see S; in Fig. 3c) without any loss or addition of rel-
evant information. Indeed, if we L-project Fig. 3c, we get
back the direct link between R, and Rs. In addition, there
is no such L2 devices with degree 2 in the raw data as IGMP
probing can only detect L2 devices connecting, at least, three
routers. Consequently, we replace each point-to-point link
between two routers by a new L2 device linking them with-
out any loss of information. This results in a bipartite graph,
that we call BipReal, that encodes exactly the same infor-
mation as the raw data in the sense that we can retrieve
at any time the original format of the data by only mapping
the L2 nodes with degree 2 into a direct link between two

1 It affects less than 0.3% of the links on average.
2 The point-to-point link may actually be seen as a L2 device as it can be
the case using OSPF.
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Fig. 3. Example of transformation between network, raw data, BipReal, PReal, BipGen, and PGen. A plain line refers to a point-to-multipoint link, while a

dashed line refers to a point-to-point link.

|Raw Data (Fig. 3(b))|

cleaning step

I L. bip random [ .
: BipGen (Fig. 3(e)) t oeration ipReal

1
I
|

; random |

| | Bipartite Evaluation (Sec. 3.3)

T Projection Evaluation (Sec. 3.2)

Fig. 4. Model setup.

routers. Although this step has no impact regarding the pro-
jection, it concerns an important fraction of links in the real
data since point-to-point connections represent 58% of all
the links on average.

It is worth emphasizing here that the interest of consid-
ering point-to-multipoint connections in the modeling of
Internet stands precisely in the fact that this new level en-
ables to link several nodes together in a way that point-to-
point connections could not do. Thus a degree-2 L2 device
would be nothing more than a simple extension cable be-
tween two routers. So the fact that no L2 devices with de-
gree 2 are present in the raw data is not really due to the
measurement procedure but is more related to the fact
that, by definition, a degree-2 device, if it exists, has to
be considered as a direct link.

The classical modeling approach consists in computing
the 1-projection PReal of BipReal (see Fig. 3d), and,
then, in modeling it with a random graph cM obtained with

the Configuration Model [17-19]. This model produces a
random graph with the node degree sequence given in in-
put of the model, the one of PReal here. We claim that this
approach is not satisfying as it does not allow to capture
other properties than the one being part of the model.
For instance, if one wants to also capture local density
properties, one has to look for another model such as the
one introduced by Newman [36]. However, this would lead
to the same observation, i.e., no other properties than the
ones injected will be captured and one has to look for an-
other model if additional properties are desired.

Instead, we propose a model that relies directly on the
real bipartite structure in order to generate graphs that
will reproduce several aspects of the actual data. Our mod-
el consists in using the degree sequences of L2 and L3 de-
vices in the bipartite graph BipReal in order to generate a
random bipartite graph BipGen (see Fig. 3e) and project it
into a standard graph PGen (see Fig. 3f). Following the
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tradition of random models, the BipGen graph is obtained
by shuffling the links between L2 and L3 nodes while
maintaining the node degree distribution at both levels.
Our expectation is that this bipartite representation of
the data will produce a graph PGen close to the actual
one PReal, closer than the CM one, in particular regarding
other metrics than node degree distribution (e.g., the local
density, degree correlations, etc.).

For the evaluation, we use the dataset provided by
mrinfo, as described in Section 2.1 and [13]. From the
4 year daily dataset, we arbitrarily select, each month,
the largest output file, leading thus to 56 global topologies
(generally they exhibit a large connected component hav-
ing more than 7000 nodes). From this subset, we more spe-
cifically focus on the largest topology, corresponding to the
data collected by mrinfo on 2006/09/07.3 We infer the
presence of L2 devices following methodology discussed
by Mérindol et al. [6, Section 2.3].

Note that, although the data obtained by mrinfo could
be partial (as they only capture a subset of the Internet
topology relying on multicast-enabled interfaces) and/or
biased, the present work is independent from the quality
of the data itself. The problem of improving the measure-
ment tools is different from the one of identifying relevant
properties able to exploit the features observed in the data,
which is what we focus on in this paper. This means that
when we further show the ability of the proposed model
to reproduce the characteristics of real data, it has to be
understood as the ability of reproducing the characteristics
as observed in the data, with their flaws.

The rest of the section is devoted to the comparison of
core statistics in order to assess the quality of the models.
Section 3.2 focuses on statistics on the projection while
Section 3.3 studies the statistics related to the bipartite le-
vel. Our purpose is to check whether this simple process
provides good results, in particular regarding metrics that
were not injected in the model. Recall that, during the
whole transformation process, we only relied on the L2
and L3 node degree distributions. Connections between
the two layer devices are then simply randomized without
injecting any other structural relationship.

3.2. Projection evaluation

Here, we evaluate the projection by considering general
statistics (Section 3.2.1) before going into details
(Section 3.2.2).

3.2.1. General statistics

The first statistics we focus on concern some basic prop-
erties observed in most real-world networks [10], formally
presented in Section 2.2.1. For each metric, the right part of
Table 1 (labeled as “Ratios”) positions the data used in this
paper (the column labeled as “2006”) with respect to the
set of 56 IGMP topologies (the column labeled as “Avg
case”), each BipGen topology being generated 10 times,
thus leading to 10 corresponding PGen projections. The left

3 Interested reader might find results for the 56 topologies at http://
svnet.u-strasbg.fr/merlin.

Table 1
Global statistics for projection evaluation.
Raw data Ratios
PReal PGen cM 2006 Avg case
n 9740 9749 9740 1.00 1.00
m 35,567 48,877 35,470 137 1.32
) 7.5 103 7.5 137 1.32
k 7.3 10.0 7.3 137 1.32
d* 58 234 58 4.03 2.93
tr 0.88 0.53 0.01 0.60 0.72
cc 0.58 0.42 0.00 0.72 0.73

part of Table 1 (labeled as “Raw Data”) provides absolute
values for the PGen and PReal graphs according to the
largest topology used over the paper.

From Table 1, one can see that the number of links, m, is
significantly higher for PGen than in the actual graphs
(around 37%). It follows naturally that the density (x10~*
in Table 1) and the average degree are also higher for PGen.
As explained later in this paper, it comes mainly from the
fact that there exists overlaps and significant correlations
between the two levels of nodes that are not necessarily
preserved during the randomization process. On the other
hand, the cM graph is particularly close to actual values
regarding the same properties. This is not surprising since
this model focuses precisely and only on the degree se-
quence of the projection. Looking at the transitivity ratio
and the clustering coefficient, Table 1 reveals that the cum
model is unable to take into account the local density cap-
tured by those coefficients. The PGen model seems, on the
contrary, able to capture it (although the values are quite
different) in the sense that the local density is relatively
very high compared to the global density, the key point
for this property.

Finally, it is worth noticing that, for several properties,
Table 1 reveals that the selected topology positions itself
in a worst case scenario compared to the averaged results
over the 56 topologies. This is particularly obvious for the
highest degree. This indicates that the conclusions drawn
from the analysis of this particular case would also be rel-
evant for the other dataset.

3.2.2. A deeper analysis

In order to refine the general statistics provided in Sec-
tion 3.2.1, Fig. 5 presents the distribution of the degrees for
the real data, PReal, and the random graphs generated by
the two methods, PGen and cM. The horizontal axis, in log-
scale, is the degree of the nodes, while the vertical axis,
also in log-scale, presents the inverse cumulative mass.
As expected, the cM model is very efficient (it is superim-
posed on PReal in Fig. 5) as its process is precisely to mi-
mic the degree sequence given in input, i.e., the one of
PReal.

The slight differences observed stem from the cleaning
steps (removing multiple-links, loops, etc.) made during
the generation. Regarding the PGen method, one can see
that it is less efficient but it shows a similar distribution.
One might notice that the main differences are located in
the higher degrees. This is also corroborated by Table 1.
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Fig. 5. Inverse cumulative degree distribution.

The highest degree is significantly higher for the PGen
graph than the real one (234 instead of 53). It partially
comes from the fact that, although the generated bipartite
graph respects the degree distribution of the routers and
the L2 devices, it does not ensure that the overlapping of
the L2 devices is preserved, thus increasing the degrees
of L3 nodes in the projection. This potential overlapping
and other possible correlations between the two layers of
node will be investigated more precisely in Sections 3.3
and 4.2.

Fig. 6 presents the inverse cumulative distribution of
the clustering coefficient for the real data, PReal, and
graphs generated by the two methods, PGen and CM. Note
that the plots are normalized over the number of nodes
with degree >2 in order to avoid side effects from the
nodes of degree 1, for which the notion of clustering coef-
ficient is inadequate. Fig. 6 clearly shows that the cM model
is unable to provide a correct representation of such a dis-
tribution. This is corroborated by Table 1 as the clustering
coefficient as well as the transitivity ratio are close to 0.
This is due to the fact that the model does not consider
the local density and that the number of triangles is very
low (only 1299 triangles while the actual graph has over
203,608 ones). On the other hand, the PGen graph provides
a similar progression, but with a significant shift of the
values.

Fig. 7 shows the correlation between the node degree
and the average clustering coefficient, i.e.,, a (x, y) dot
means that the average clustering coefficient for the nodes
having degree x is y. Fig. 7 confirms the analysis made
above. Whatever the degree of a node in the cM model,
its clustering coefficient remains close to zero. The PGen
graph, on the other hand, is able to present a similar scatter
plot shape, although the values are significantly different.
More interestingly, one can see that high clustering coeffi-
cients are related to nodes having a similar degree on both
figures.

The main difference concerns small degree nodes. For
instance, nodes with degree 2 in PGen graphs have an aver-
age clustering coefficient of 0.1 while actual ones are close
to 0.4. This indicates an interesting characteristic of the
two bipartite structures. Whereas in the actual bipartite,
it seems that, when a router is connected to two others
routers, they tend to share L2 devices. This is absolutely
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Fig. 7. Average clustering coefficient associated to a given degree.

not the case for the PGen graph. This particular difference
concerning degree-2 nodes can be explained by the L2 de-
vices added during the first step of the PGen generation
(see Section 3.1). A deeper study of the degree correlations
in the bipartite structure will confirm this statement (see
Section 4.1).

This first analysis made on the projected graphs con-
firms the relevance of using bipartite structure to model
the data as it succeeds in reproducing globally the charac-
teristics of the real network. In particular, it is able to cap-
ture metrics that are not part of the model. This is a
significant improvement in itself since the usual way to ob-
tain properties is to encode them directly in the generation
process, which we claim is not satisfying in a long term
perspective.

3.3. Bipartite evaluation

This section intends to better characterize the differ-
ences observed between real (i.e., BipReal) and L2L3
(i.e., BipGen) projections from the point of view of the
bipartite structure. Following notations presented in Sec-
tion 2.2.2, we compare standard properties of bipartite
graphs.

3.3.1. General statistics
Table 2 gathers the statistics presented in Section 2.2.2
for the real and the random bipartite graphs, where T
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Table 2
Global statistics for bipartite evaluation.
BipReal BipGen
n, 10,224 10,224
n, 9758 9758
Myip 25,422 25,415
ki, 2.5 2.5
ki, 2.6 2.6
Obip 0.00025 0.00025
CChip 0.37 0.27
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Fig. 8. Correlation between degrees in the bipartite and in the projection.

refers to L2 nodes (L) and L to L3 nodes (L3). It shows that
all the simple properties are respected by the random
bipartite graph, except for the bipartite clustering coeffi-
cient for which a slight shift is observed. Note that we do
not present the ratios given in Table 1 here since they
are all equal to 1 (either for this specific case or the average
ones), except for the bipartite clustering coefficient for
which our case ratio (0.73) is slightly worst than the aver-
age value (0.78).

Those observations show that our model succeeds in
preserving the global characteristics of the real bipartite
structure but do not provide insight on why the projections
differ. This is why we turn now to a more refined analysis
over those notions.

3.3.2. A deeper analysis

First, Fig. 8 presents the correlation between the degree
of L3 nodes in the bipartite graph and their average degree
in the projection, i.e., a (x, y) dot means that the nodes hav-
ing degree x in the bipartite structure have an average de-
gree y in the projection.

Fig. 8 shows that the behavior is similar in both cases. In
particular, they both follow a straight line in the log-log
scale for x values >3 with a similar slope. But two impor-
tant differences are noticed. First, the values are signifi-
cantly lower for the actual bipartite. This indicates some
redundancies in the bipartite structure, meaning that
many neighbors of nodes in the projection share actually
several common L2 devices in the bipartite. This overlap-
ping pattern induces the lowering of their degree in the
projection.
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Fig. 10. Degree correlation.

From the BipGen points in Fig. 8, one can conclude that
this redundancy over the L2 nodes is seemingly lost when
shuffling the links in the bipartite graph. Note that this is
true in particular for high degree nodes, suggesting that
the difference observed for the highest degree in the pro-
jection might be due to this redundancy. Another differ-
ence can be pointed out for low degree nodes for which
the remark stated above does not stand. Degree-1 nodes
in particular present the opposite situation: in real bipar-
tite, the single L2 device to which they are connected hap-
pens to have a relatively high degree (close to 6 on
average). This differs both from the tendency observed
for nodes with degree >3 and from the random case for
which the correlation is consistent for all degrees.

Figs. 9 and 10 focus on the bipartite clustering coeffi-
cient as defined in Section 2.2.2. Fig. 9 presents the cumu-
lative bipartite clustering coefficient of L2 nodes for real
and random bipartite graphs, while Fig. 10 shows the cor-
relation between degree of L2 nodes and their average
bipartite clustering coefficient (i.e., a (x, y) dot means that
the average bipartite clustering coefficient for L2 nodes
having degree x is y).

Both figures show that the two bipartite graphs have a
similar behavior regarding this coefficient although a non-
negligible fraction of nodes in the real bipartite has a high-
er clustering coefficient than in our model. This is
particularly true for low degree nodes (Fig. 10). This means
that low degree L2 nodes tend to share their neighbors



2340 F. Tarissan et al./ Computer Networks 57 (2013) 2331-2347

2 3 4
& "
e '/I N,
[ / . N,
] ‘ N
] / ! \\‘
A B C D N

(a) before randomization

=@

ol N

00— e
2@

(b) after randomization

Fig. 11. Effects of bipartite random generation (BipReal to BipGen) on L3 degree.

with other L2 nodes. This phenomenon explains the gap
observed in Fig. 9 for high clustering coefficients and
corroborates the difference observed for the global ccpp
statistics in Table 2. It strengthens also our former remark
on the redundancy that seems to be more important in the
real bipartite topology than in the random one and that
explains the differences observed on high degree nodes
in the projection.

In order to test this hypothesis, we compute two
more refined properties. The bipartite clustering coeffi-
cient, although dealing with overlapping of L2 nodes, is
defined for pairs of nodes. We might want to use a more
direct notion defined for a single L2 node. One possible
solution is to use the redundancy coefficient [35] defined
for all L2 nodes v as the fraction of pairs (u, w) of L3
neighbors of » that are connected to a common L2 node
other than ». When such a case occurs, then (u, w) is
linked in the projection whether v exists or not. Thus,
we might consider » as redundant as far as u and w
are concerned. Our analysis shows that the two topolo-
gies behave very differently regarding this coefficient:
on average, 27% of L3 nodes pairs connected to a L2 de-
vice in a real case would not be affected by the removing
of this device in term of their link in the projection. This
proportion drops to 0.3% in the random case.

The notion above focuses on the L2 nodes that are
redundant for the projection. One might similarly define
a notion of redundancy over the links, i.e., the links that
would not modify the projection if they were removed
from the bipartite graph. Let us call internal link such a link
[37]. Our analysis shows that 13.7% of links in the real
bipartite graph are internal links, while this proportion is
only 0.2% for the random case.

These two last properties are clearly in relation with
the notion of degree in the projection and, as such, ex-
plain partially the differences observed in Section 3.2. A
deeper analysis is left for further works but Section 4.3
already provides interesting directions to improve our
model.

All the properties explored in Section 3 show the benefit
one can gain from modeling such L2-L3 data with bipartite
graphs. While it offers support for generating flat graphs
that are able to reproduce qualitatively several and inde-
pendent properties of the original data (see Section 3.2),
it also proposes new mathematical tools to analyze its
structure from the point of view of the bipartite graph it-
self. In particular, it allows for identifying which aspects
of the real network might stem from random processes
and which ones are due to strong designed patterns.

4. Discussion

In order to better understand the limitations of our
model illustrated in Sections 3.2 and 3.3, we investigate
here two interesting properties: (i) we evaluate the effects
of the bipartite random generation on L3 degrees and (ii)
we study the redundancy between L2 devices (i.e., we ana-
lyze the cases in which removing a L2 node or a L2-L3 link
would affect or not the L3 projection).

While the first property (i), detailed in Section 4.1, al-
lows us to emphasize an interesting correlation between
the L3 degree and the L2-1L3 degree, the second property
(ii), discussed in Section 4.2, allows us to exhibit strong
patterns and to explain how point-to-multipoint connec-
tions “behave” in real networks. Finally, we envision two
possible extensions to improve our model in Section 4.3.

4.1. Correlation analysis

Although our model respects the degree distribution of
both L2 and L3 devices, there remains one important dif-
ference between the raw data and the proposed bipartite
structure. As explained in Section 3.1, due to the definition
of bipartite graphs, we first replace any point-to-point con-
nections between routers by a virtual L2 device connecting
them. Although this modeling is strictly equivalent to the
point-to-point connection for the projection perspective,
it might have an impact on the structure during the ran-
domization process.

Indeed, as shown in Fig. 11, a simple rewriting in the
bipartite graph may induce an important modification for
the degree of the nodes in the projected graph. This is
the case for node B in this virtual example. Before the ran-
domization, it is connected to a unique L3 node (both via
node 1 and 2, see Fig. 11a), thus having degree one in the
projection. But simply switching the extremities of links
(2, B) and (3, C) leads to a new bipartite graph (see
Fig. 11b) in which B is now connected to every nodes (to
A via 1 and to all others via 3), thus increasing drastically
its degree in the projection. Obviously, this example is an
extreme case but it illustrates how the randomization pro-
cess at the bipartite level may affect the degree properties
of the projections.

In order to study how such a randomization may impact
the generated graphs, we investigate how routers are con-
nected to L2 and L3 devices in the raw data and in random
graphs (considering here only “actual” L2 devices). Fig. 12
shows the correlation between L3 degrees and the number
of point-to-multipoint connections both for real data and
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Fig. 12. Degree versus point-to-multipoint degree.

random bipartite graphs. On each plot, a (x, y) dot stands
for a router having x links in the bipartite graph, y of them
being with a L2 device with degree strictly higher than 2
(recall that a L2 node with degree 2 stands precisely for a
point-to-point connection).

Fig. 12a shows a striking fact: routers with degree high-
er than 20 have no connection to real L2 devices but only to
point-to-point connections. As explained above in the
example, our randomization process does not verify such
a strong characteristic, as it can be noticed in Fig. 12b. This
means that, in our model, it is likely that routers having a
high L3 degree (i.e., routers having only point-to-point
links) will be connected to actual L2 devices (whose degree
is strictly greater than 2), thus increasing, and potentially
significantly, their degree in the projection.

This observation on real data leads us to explore a more
constrained model able to preserve the correlation be-
tween the number of point-to-point and point-to-multi-
point connections of routers collected in the ground data.
It relies on splitting the L3 degree into two disjoint values:
one for the number of point-to-point links and one for the
number of point-to-multipoint ones. Once such a couple of
degrees for each L3 node has been defined, it is easy to
adapt our former model to cope with this distinction.

Surprisingly, this approach does not improve signifi-
cantly the properties observed in the generated projections
(compared to the ones observed in the real projections).
More precisely, most of the characteristics of the generated
hybrid projections are close to those of the random projec-
tions (see Table 1). The only improvement we observe is in
the highest degree which is a bit lower than in the basic
model but still higher than in the dataset (we obtain a ratio
of 3.29 instead of 4.03). But the overall degree distribution
and correlations studied in Section 3 are not improved.
This weak improvement is partially due to the low number
of large degree routers in the raw data set (less then 1% of
routers have a degree higher than 20), limiting so their im-
pact on global properties.

In order to better understand the inadequacy of the hy-
brid approach, we also look in detail at the properties of
the random hybrid bipartite structure. It turns out that
they match exactly those of the random bipartite graph
(shown in Table 2). Besides, as for the basic model, redun-
dancy patterns are lost in the randomization process. For

instance, the redundancy coefficient is still very low
(0.16%) compared to the one observed in the real bipartite
(27%). We pointed out previously that this is a plausible
explanation to the model limitations. The redundancy
coefficient is clearly in relation with the degree properties
of the projections and thus with the quality of such prop-
erties in the model. This last observation explains why this
hybrid approach fails to enhance the quality of the model
accuracy. In the next section, we study in more depth the
property related to the redundancy coefficient.

4.2. Redundant networking patterns

At the end of Section 3.3, we identified an interesting
property using the redundancy coefficient and internal
links. Indeed, the data considered in this paper exhibits
many redundant Point-of-Presence (PoP) patterns.

Fig. 13 illustrates such redundant patterns between L2
devices observed in the raw data. In both Fig. 13a and b
(both figures come from the Level3 London PoP observed
in 2011 and 2007), one can guess that the redundancy
coefficient and the number of internal links are high. Such
network structures, generally required for physical/logical
redundancy and/or load balancing, are not random. Thus,
these structures, favoring the network robustness, imply
that the degree in the projected graph will be lower for
the projection of the real network than for the projection
of the random bipartite graph.

In Fig. 13a, we can observe that the two L2 devices gen-
erate two cliques of i + 1 routers that only differ on EBR1
and EBR2 (while these two routers are connected through
multiple parallel point-to-point links). As a result of the
projection, i links will disappear in the projection of the
real graph while it is likely that, in the random bipartite
graph, those links will be distributed over all the network:
the projection will then have a higher average and makxi-
mal degree.

The example given in Fig. 13b exacerbates this observa-
tion: here, while two of the six L2 devices® interconnects

4 Note that it is possible that such a symmetry involves some VLAN
configurations leading so to two physical L2 devices having three VLANs.
Furthermore, such an evolution between 2007 and 2011 suggests an
improvement in the architecture capacity.
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the i routers, i — k other routers are connected again through
the four others L2 devices. This kind of configuration is not
that rare and can, at least, partially explain our random
model limitations on metrics previously highlighted.

4.3. Next steps

Observations made in Sections 4.1 and 4.2 open the way
to the design of improved models, potentially fixing lacks of
the former one. The two improvements we envision belong
to two distinct families of models: random and structural.

On the one hand, we could rely on the strong redun-
dancy patterns highlighted in Section 4.2. Based on such
observations, it becomes natural to attempt to capture
the redundant PoP patterns illustrated in Fig. 13. One pos-
sible way would be to encode the overlapping among L2
devices in the model itself. To do so, one can extend the
bipartite structure into a tripartite one using a third level
to integrate such a redundancy.

In practice, one can encode any overlapping among L2
devices by the addition of a new node at a third level (L1),
connecting both the L2 and L3 devices they are covering
(see [38]). Applying this procedure on the bipartite graph
of Fig. 2a, for example, would result in the tripartite struc-
ture presented in Fig. 14. Indeed, the nodes 1 and 2 are both
connected to nodes B and Cin the bipartite graph. This over-
lapping is then encoded in the tripartite graph by the addi-
tion of a new third-level node « connecting B, C, 1, and 2.

Although such L1 nodes are artificially introduced, they
intend to encode real networking logical patterns. As ex-
plained previously, an L1 inter-connection may result from
some L2 logical sub-layer as VLAN. It can be used for traffic
engineering purpose such as fast-rerouting or load balanc-

ing to circumvent capacity limitations. We envision to cap-
ture that kind of (frequent) redundant patterns by
encoding them in a third layer of inter-connection: L1
nodes are logical (on the contrary to L2 ones that are phys-
ical) and represent the subset of routers that are connected
to a given set of L2 nodes.

Once such a tripartite structure has been defined, one
can easily apply similar randomization processes than
the one proposed in this paper. This process would shuffle
independently L1-L3 links and L1-L2 links but preserve
the structure defined by the new third level. This would re-
sult in generating a new tripartite graph presenting the
same redundancy patterns than the original ones that
could eventually be projected into a bipartite graph.

On the other hand, we could follow the path opened by
the observations in Section 4.1: there are evidences of a
significant correlation between a router degree and the de-
grees of L2 devices connected to it. We observed, for in-
stance, that very small degree routers are connected to
high degree L2 devices (on average). More generally, back-
bone routers (in an AS core) have a large degree mostly
composed of L3-L3 links, while access routers (providing
Internet services to clients) exhibit a lower degree and,
generally, mainly composed of L3-L2 connections. How-
ever, although this kind of design features can bring
improvements in the ability of the model to reproduce this
specific property, it also comes with a loss of generality in
generated graph properties. As mentioned in the introduc-
tion, we believe that random models, such as our tripartite
proposal, are more suited for formal analysis.

The two directions suggested here may take several
forms. They would require to investigate different mapping
as well as to define new extensions of metrics proposed for
the bipartite structure analysis. We leave these promising
directions for future work.

5. Topology generation

This section presents a first implementation of a probabilist
topology generator relying on an intermediate bipartite graph.
Our generator is freely available from http://code.google.com/
p/py-bipartite/. It generates bipartite and projected graphs
that can be saved to most common graph formats.

The difference between the generator and the bipartite
model presented in Section 3 is that the generator does not
use a prescribed degree sequence obtained from real
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bipartite graph but, rather, uses probability distributions.
This makes possible the synthesis of a larger number of
graphs by varying the sizes of the L2 and L3 sets or the
parameters of the probability distributions.

5.1. Methodology

The generator applies a few simple steps. First, L2 and
L3 degrees are drawn from a probability distribution. Sec-
ond, a bipartite graph is generated by randomly connecting
L2 vertices to L3 vertices. Finally, a flat graph is produced
by projecting the bipartite graph on to the L3 set. The
remaining of this section describes each of these steps in
further details.

To draw L2 and L3 degrees, the current version of the
generator is based on a discrete power-law distribution.
For several practical reasons, we opted for the Zipf distribu-
tion [39], a discrete power-law distribution. The support of
the Zipf is a finite interval of natural numbers [x;;, N], X
< N. Outside of this interval, the probability mass function
equals 0. This property is convenient as it allows us to de-
fine a limit on the maximum degrees that can be drawn.
Recall that large degrees in the bipartite graph can lead
to extremely large degrees in the final projected graph
(as already noted in Section 3). Thus, this feature of Zipf
distributions is of the highest interest compared to an un-
bounded Zeta discrete distribution or a standard Pareto
continuous distribution.

The probability mass function of the Zipf distribution is
given by
—o

P~ ey ©

where k,x,,, N€ N N > k > x,, and « € R, > 1. The term
at the denominator, C, is a normalization factor that en-
sures the sum of the probability mass function values over
the support interval equals to 1. The value of C(N, o, x,,) is
given by SN i,

To generate a bipartite graph, two distinct Zipf random
variables are used: one for the L2 degrees, the other for the
L3 degrees. These degrees must satisfy the following basic
property of bipartite graph: the sum of the L2 degrees must
match the sum of the L3 degrees. To ensure this property,
one can check a priori that their expectations will match, or
more formally E(Z,) - nip = E(Z3) - ni3, where ny; is the
number of the Li vertices and E(Z;) is the expectation of
the random variable Z;; from which Li degrees are drawn.

The expectation of the Zipf distribution is given by

Z?I:xm i—s+l

E2) = C(N, o, xm) (6)

Even if the expectations for the sums of degrees match,
it is possible that the degrees actually drawn from the ran-
dom variables do not have matching sums. In this case, we
follow the suggestion by Newman et al. [18]: we randomly
pick one L2 node and L3 node, discard their prescribed de-
grees, and draw new degrees. This process might need to
be repeated several times but remains practically feasible.
Most of all, it ensures that there is no bias in the redrawing
step.

Finally, the bipartite graph is produced by considering
that each node has a number of half-edges equal to its pre-
scribed degree. The half-edges of L2 nodes are then ran-
domly connected to half-edges of L3 nodes. This process
is equivalent to the random generation of BipGen from
the degree sequences of BipReal described in Section 3.1.

5.2. Evaluation

This section provides a first evaluation of our genera-
tion methodology. We aim at quantifying the accuracy of
our probabilistic redrawing process to mimic real degree
sequences as well as verifying that basic properties ob-
served in bipartite graph projections are still coherent with
our model results. We rely on the mrinfo dataset de-
scribed in Section 2.1. For clarity reasons, as in Section 3,
our discussion will focus on the graph collected on 2006-
09-07. We consider the BipReal bipartite graphs built
from the raw mrinfo data by converting any L3-L3 edge
into a pair of L3-L2 edges and an artificial L2 device, as ex-
plained in Section 3.1.

First, the L2 and L3 degrees of the BipReal graphs are
modeled by two Zipf distributions. The exponent of the
Zipf distribution is estimated using the method described
by Clauset et al. [40]. Power-law distributed integers are
approximated as continuous reals rounded to the nearest
integer and the maximum likelihood estimator & for the
exponent is computed. Unfortunately, the degree distribu-
tions in the BipReal graphs do not show a scaling behav-
ior along all the degrees. For L2 (respectively L3), the
scaling behavior is only observed for degrees equal to
and above x,, = 3 (respectively x,, = 2). One of the reasons
is the large number of artificial L2 devices added to model
the L3-L3 edges. Another reason is a limitation in the
mrinfo measurement itself: the raw data does not contain
nonresponding IP addresses (the ones seen as neighbors by
some responding router). The estimated exponents for the
L2 and L3 degree distributions are computed based on
their respective minimum values x;,.

Table 3 summarizes the BipReal statistics and metrics
computed for the 2006-09-07 instance. & denotes the
power-law exponent estimate while E(Z) is the expectation
of the power-law distribution.

Fig. 15a and b shows the frequency distribution of L2
and L3 degrees above or equal to x,, for the selected in-
stance using a log-log scale. Those two figures also show
a plot of the probability mass function of the random vari-
ables using the estimated exponents. The match obtained
using the maximum likelihood estimator to compute the
Zipf exponent seems quite satisfying for degrees above or

Table 3
General statistics and parameter estimates for BipReal.
L2 L3

n 10,227 9758
d* 58 41
k 2.49 2.61
Xm 3 2
a 243 2.48
EZ) 1.85 1.73
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Fig. 16. Distribution of the average and highest degrees among the synthetic instances.

equal to x,,. For the low L2 degrees (under x,,) the Zipf
model over-represents the degree 1 vertices while it un-
der-represents the degree 2 vertices. For the low L3 de-
grees, the degree 1 vertices are over-represented. This
has an impact on the L2 and L3 degree expectations E(Z)
which are smaller than the respective average degrees k.
Although the remaining of this section will show that this
does not prevent the projected graphs to exhibit realistic
properties, it can be a motivation to use another probabil-
ity distribution than the Zipf one. However, we believe
that, as mentioned previously in Section 4.3, splitting the
L3 degree distribution in its two sub-distributions,
L3 - L2 degrees (pure-bipartite) and L3 — L3 degrees
(pure-L3), could already bring significant improvements.
Indeed, in the pure-bipartite graph, the degrees under x,,
are more marginal and the scaling region captured by the
Zipf represents a large fraction (88%) of the L2 degrees.
Since our generator intends to be as simple as possible in
term of the number of input parameters, we leave this hy-
brid redrawing approach for further works.

To generate graphs according to the above model, the
generator is invoked with a set of eight parameters: three
parameters (o, X, N) for both the L2 and L3 Zipf random
variables and two for the cardinals of the L2 and L3 sets.

To ensure the expectations of the sum of degrees match,
the size of the L2 or L3 set can be left undefined and the
generator will compute the right size.

To further illustrate the generation process, we gener-
ated 100 bipartite graphs with the parameters estimated
from BipReal. As our objective is to produce projected
graphs of the same size as PReal, we fixed the size of
the L3 set to 9758. We let the size of the L2 set undefined
and the generator computed a size of 9149 L2 vertices.
Note that the L2 size is slightly lower than in PReal
(10,227). This can be explained by the expected L2 degree
that is slightly larger than the expected L3 degree while in
PReal, the average L2 degree was slightly lower than the
L3 degree.

The expected sums of degrees equal to 16961.86 for L2
nodes and to 16960.97 for L3 ones.? During the generation
of the 100 synthetic instances, the number of redraws re-
quired was limited to 60,739 in the worst case and 8789
on average. The minimum number of redraws was 23.

We now focus on the projected graphs. Fig. 16a and b
shows the distribution of, respectively, the average and

5 The difference comes from rounding during the computation of the size
of the L2 set.
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maximum degrees among the 100 instances generated. We
observe that the maximum degree can go as high as 408
but is less than 290 in 50% of the instances. The average de-
gree is 9.73 on average and tops at 11.85 while the average
degree of the PReal graph is 7.29. As expected, we can no-
tice that differences observed here are in the same order
than the ones revealed with our model using prescribed
sequences.

Fig. 17a shows the degree distribution in PReal and in
the first synthetic instances. The main difference lies in the
number of unconnected nodes: PReal contains only 18
while the first synthetic instance contains 3058. The rea-
son for this difference is the larger amount of degree-1
L2 vertices in the synthetic bipartite graphs. Both the
PReal and synthetic distributions seem to show a scaling
region up to a certain degree, but the tail seems to be cut
off. Note that this behavior is achieved for the synthetic
instances thanks to the highest degree bound of the Zipf
distributions used to generate the bipartite graphs.

Fig. 17b shows the clustering coefficient distribution in
PReal and in the first synthetic instance. This instance is
representative of the others as their respective curves
would be hardly distinguishable on the figure. Note that
the clustering coefficient is only defined for nodes with a
degree higher than 1. This amounts for 5496 nodes (57%)
in the synthetic instances while it concerns 7777 nodes
(80%) in PReal. The reason for such a difference is in the
frequency of very low degree nodes. This explains why
the top left point of the inverse CDF does not match for
both curves. In the remaining of the paragraph, we only
consider nodes for which the cc is defined. In PReal, a sig-
nificant fraction of the nodes (1900, 24%) have a clustering
coefficient equal to 0, another large fraction (2961, 38%)
have a cc equal to 1, and the remaining nodes have a cc
relatively well distributed between 0 and 1. In the syn-
thetic instances, 3995 nodes (72.3%) have a cc equal to 1
and the remaining nodes a cc between 0.08 and 1. The
synthetic instances seem to not very well capture the
low cc nodes, but have a behavior similar to PrReal for
the remaining nodes.

Those results show that our proposed generator is able
to provide results similar to the former model, at least
qualitatively. But a careful reader might notice that the
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Table 4
Global statistics for the bipartite evaluation of the generator.
BipReal synthetic 0
ng, 10,224 9149
n, 9758 9758
My 25,422 17,098
ki, 25 1.8
ki, 2.6 19
Obip 0.00025 0.00019
CChip 0.37 0.31

behavior of the clustering coefficient for the generated
topology are different from the model presented in Sec-
tion 3. Indeed, in Fig. 17b, the curve for the synthetic in-
stance is above the one of PReal while in Section 3.2 it
was the opposite. This difference can be explained by the
generation of the synthetic degree sequence. Indeed, as
mentioned earlier, in order to ensure that the expectations
of the sum of degrees match, we had to release the con-
straint on the number of L2 nodes. This, in turn, happened
to have a major impact on the number of degree-2 nodes
which are very few in the synthetic instances compared
to the real data. Although studying the impact of generat-
ing synthetic degree sequences on the model seems very
interesting and should help understanding better the rela-
tion between the parameters, we claim that such a formal
investigation is beyond the scope of the present work and
let such a study for further work.

Finally, in order to assess the quality of the generated
bipartite structure itself, we performed the same analyses
as in Section 3.3 by computing the standard metrics de-
fined at the bipartite level. Those are shown in Table 4.
We observe that, despite some differences, the statistics
are quite well reproduced by the generator. As explained
above for the clustering coefficient distribution, it turned
out that the differences are due to the generation process
of synthetic degree distributions. Beside those statistics,
we also computed the redundancy coefficient and found
that it is very different for the generated bipartites (0.5%)
and the real one (27%). We obtained a similar result with
the model presented in Section 3 where the observed
redundancy coefficient was only 0.3%.
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To summarize, except some limitations that are par-
tially due to the difficulty to synthesize the raw data, our
generator is able to provide almost equivalent results than
the former model. The tradeoff between our generator
accuracy and simplicity (and generality) seems very inter-
esting to reproduce main real network characteristics.

6. Conclusion

Recent developments in Internet topology discovery
have opened new perspectives in modeling IP networks.
Indeed, when considering IGMP probing instead of stan-
dard traceroute probing, one can distinguish two layers
of networking devices in the collected dataset: point-to-
point connections between layer-3 (L3) devices (such as
routers) and point-to-multipoint routers through layer-2
(L2) devices (such as switches). Prior to this work, to the
best of our knowledge, those two layers have not been
integrated into topology models.

In this paper, we proposed a bipartite model of the
Internet topology, i.e., an Internet model relying on graphs
in which vertices are divided into two disjoint sets (L2 and
L3 nodes) such that every edge connects a vertex in one set
to one in the other. Our model has the advantage of being
“simple” in the sense that it does not require more than
two metrics as inputs: we only consider the L2 and L3 node
degree distributions. In addition, by confronting this model
with measurement data obtained by mrinfo, we proved
that it provides interesting behaviors: it succeeds in repro-
ducing qualitatively different and independent properties
of the original data. This result is particularly promising
regarding the metrics that were not directly injected in
the model (such as the clustering coefficient and some de-
gree correlations) which is in sharp contrast with usual re-
sults in the domain.

In a second step, using metrics defined for bipartite
graphs, we provided evidence of the relation between the
properties of the bipartite structure and the ones of its pro-
jection. We showed in particular how strong redundant
patterns observed in real data might be detected using
the notion of internal link and redundancy coefficient de-
fined at the bipartite level. This offers a second interesting
perspective for using the bipartite vision.

Further, based on our bipartite model, we proposed and
evaluated an Internet topology generator. It relies on
bounded discrete power law distributions allowing to
reproduce sequences of degree in order to generate a large
diversity of graphs. Our dataset is freely available (http://
svnet.u-strasbg.fr/merlin) as well as our topology genera-
tor (https://code.google.com/p/py-bipartite/).

Finally, we also envisioned possible future research
directions able to capture redundant patterns and correla-
tions in L3 and L2-L3 degrees. Those directions seem
promising and future work should reveal how they can im-
prove the contributions presented in this paper.
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