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1 Generic event detction

The problem of event detection is far from being new. This is a classical problem
in many contexts.

Many studies target event detection in the dynamics of various systems [7].
Two main approaches are followed, named anomaly-based and signature-based.

The underlying principle of anomaly-based approaches [4, 3] is that one
knows the normal behavior of the system. Then, any observation that differs
from this normal behavior is considered as an event. This approach is very
appealing as it is able to detect any kind of event, including kinds that were
never observed. It however relies on a precise knowledge of the dynamics of
the considered object, and evolution of the normal behavior makes the method
ineffective. In the case of the internet topology, these two limitations make this
approach unapplicable.

Signature-based approaches rely on the knowledge of characteristic features
of events to detect, which may be inferred from a set of known events (typically
with machine learning techniques) [18, 7]. If the observed dynamics matches
these features at some point, then one considers that this is an event. This
approach is very effective in cases where the events may be described, like some
computer viruses for instance. In our case, though, very limited knowledge of
events in the internet, and no description on their impact on observed topology,
are available.

Much attention has been paid to event detection in internet traffic, see for
instance [1, 15, 23, 19, 13, 16, 9, 5, 10]. The methods used are mainly based on
the quantity of traffic; some works study the whole traffic, and some subdivise
the multi-dimensional space induced by the origin and destination of the traffic;
some works also correlate informations from different sites [8]. These works have
produced valuable results, but the strategies based on the volume have reached
their limits, mainly due to the scale-free nature of the IP traffic that makes
outlier detection difficult if not impossible.

2 Anomaly/event detection in graphs

Some works have addressed the questions of detecting anomalies in static graphs,
i.e. parts of the graph that are not coherent with its global structure [17, 20, 6]
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Some works have also studied the behaviors of nodes in dynamic networks,
and isolated some behaviors which are statistically different from the expected
behavior [2].

Some works have also studied the temporal evolution of graphs, to try and
detect temporal and/or spatial anomalies [21, 22, 11, 14]. In particular, [12]
studies the impact of the smoothing window used to compute statistics on the
observed properties of a dynamic network, and notices that some window sizes
lead to event detection, while others do not. However much remains to be done
in this context.
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