
State of the art

Description of the dynamics

DynGraph project

ANR-10-JCJC-0202

March 9, 2011

1 General description

Most of the works dealing with the description of dynamic networks have been
concerned with the in-depth study of specific real-world dynamic graphs. The
case of contact or proximity networks between individuals, measured via elec-
tronic sensors or bluetooth cellphones for instance, has received much atten-
tion [8, 9, 11, 46, 51]. Other cases include P2P exchange networks [19, 31, 32],
the internet’s topology [29, 38, 36, 41, 40, 27], biological networks [1, 2, 42, 53,
47], citation networks [33], and different types of online social networks [13, 48].

Some works have focused on general questions, relevant for the study of any
dynamic graph. These questions include algorithmic methods for manipulating
dynamic graphs [7, 23, 24, 15], the study of the evolution of formation of specific
patterns [54, 10, 28, 43, 25, 14] or the evolution of distances in the network [34],
or dynamic graph drawing [17, 18].

Some works study the time behavior of nodes in a dynamic networks, i.e.
the times at which nodes create new links, to detect generic behavioral pat-
terns, and/or nodes with anomalous behavior, and/or times at which the global
dynamics of the network changes [26, 33].

Some surveys on the topic have been written [3, 37].

2 Link prediction

Link prediction is a key research problem in network dynamic analysis. Several
works study this problem. Most of them are based on measures of similarity
between nodes. For instance, in [35] the authors examine several topological
measures (such as Jaccard coefficient, Adamic/Adar coefficient, SimRank, etc.)
based on node neighborhoods and the set of all paths between nodes. They
use these measures for ranking possible future co-authors collaborations. In [21]
the author proposes to use another topological measure called generalized clus-
tering coefficient. In [20, 39] the authors add several non-topological measures
based on node attributes (such as keyword match, number of papers, geographic
proximity, KL-divergence of two nodes’ topic distribution, etc.) and they use a
supervised learning algorithm to perform link prediction. In a similar way, the
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authors of [5] predict co-authoring of publications by using topological measures
computed in the co-authoring graph and indirect topological measures computed
using the co-author graph (where two papers are linked if they are signed by
a same author). The authors of [55] add another measure (local probabilistic
model) to estimate the co-occurrence probability of two nodes, and in [52] the
authors extend this by incorporating available temporal information. Finally,
the authors of [12] use hierarchical decomposition of the social network and use
it for predicting missing links. Authors generate a set of hierarchical random
graphs, and they compute average probability of connection between two nodes
within these hierarchical random graphs.

Some works address the topic of link prediction in bipartite networks. In [22],
the authors adapt some topological measures used in classical graphs. For the
measures based on node neighborhoods between two nodes (u, v), the authors
consider neighbors of u in the bipartite graph and set of neighbors of v. For the
measures based on the set of all paths between nodes, they compute directly
in the bipartite graph. To go further, the authors of [4] consider two transfor-
mations of the bipartite graph into a classical one, and they use two indirect
measures. For predicting link (u, v), they consider the classical graph containing
u, and they apply the topological measures between u and the neighbors of v in
the bipartite graph, and conversely.

3 Bias in the observation of the dynamics

Finally, a number or works have addressed the question of the reliability of the
observed properties of a dynamic network. They studied possible measurement
biases occurring in this context.

One bias comes from the fact that, because we can only observe a system for
a finite period of time, events occurring before or after the observation window
are missed. This has mainly been acknowledged for churn, i.e. the dynamicity
of users, in P2P systems [6, 44, 45, 56, 50, 49], but also in other contexts [25, 30].

Willinger et. al. [57] addressed, in the context of IP flows, the question of
whether the observation window is long enough to characterize some dynamic
properties. They study the standard deviation of the flow size distribution as
a function of the measurement length, and argue that the fact that it does not
converge means that the samples may come from an underlying distribution
with infinite variance. This in turn may make it difficult to fit the observed
properties with a model.

The create-based method [44, 45] is based on the observation that being able
to only capture accurately the length of sessions that begin and end within the
measurement window creates a bias towards short sessions. To remove this bias,
the measurement window of length T is divided into two halves, and only the
sessions that begin during the first half and last less than T/2 are considered.
This leads to an unbiased estimation of sessions with length less than T/2. This
method only applies to properties for which a notion of session can be defined,
which is not always the case.

Finally, the bias caused by the finiteness of the observation window is not
the only one occurring in dynamic networks. Stutzbach and Rejaie [50] studied
different aspects of peer dynamics in three different classes of P2P systems
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(Gnutella, Kad and BitTorrent). They carefully analyzed the different kinds of
bias that may influence such a study, and presented a list of those they identified,
which includes problems linked to accurate peer identification.

Wang et. al. [56] argue that the create-based method is biased when the data
is obtained through periodic sampling, because short events may be missed or
incorrectly observed. They propose a new sampling algorithm called RIDE
(ResIDual-based Estimator) which measures session length distributions with
high accuracy and requires a low sampling frequency.

Stutzbach et. al. [49] investigate the issues arising when the whole system
is not known, and informations about the nodes and links are obtained by a
sampling procedure (in this case, random walk-based methods), in the case
where the system evolves while the sampling process is under progress.

Friggeri et. al. [16] studied contact networks captured with sensors able to
detect when they are close to each other. They studied the bias on the observed
contact duration caused by the fact that some sensors may fail to detect each
other at some times.
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