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Abstract: 2D-gons tilings with parallelograms are the main model used in physics
to study quasicrystals, and they are also important in combinatorics for the study
of aperiodic structures. The algorithmic manipulation of these objects is not easy
because of their geometrical nature. In this paper, we present an encoding of 2D-
gons tilings with graphs based on the adjacency relation between tiles. We show
that the graphs we introduce are in one-to-one correspondence with the considered
tilings, which make it possible to use them as dual objects. This encoding can be
used to make various statistical studies and experiments on these tilings. One can
for example use it to sample random 2D-gon tilings.

1 Introduction

A tiling can be defined as a partition of a given region of an affine space. More
classically, one considers a finite set of shapes, called prototiles, and a region of an
affine space. The tiling problem is then to decide whether this region can be tiled,
i.e. covered by translated copies of prototiles, without gaps or overlappings between
them. If this is possible, the region is tilable, and a solution is called a tiling of the
region. The translated copies of the prototiles are the tiles of the tiling. If the region
to tile is the whole plane, this problem has been shown to be undecidable by Berger
[Ber66], which was the first important incursion of tilings in computer science.

In this paper, we are concerned with tilings of 2D-gons with parallelograms. A
2D-gon is a convex finite region of the affine plane: an hexagon when D=3, an
octagon when D=4, a decagon when D=5, etc. Such a region can always be tiled
with parallelograms. 2D-gon tilings by parallelograms appear in physics as a model
for quasicrystals [Des97] and aperiodic structures [Sen95]. They are also used to
encode several combinatorial problems [EIn97, Lat00], and have been studied from
many points of view [Lat00, RGZ94, Bai99]. In particular, they are strongly related to
the matroid theory, since the Bohne-Dress theorem proves the equivalence of 2D-gon
tilings with a class of matroids [RGZ94, BVS*t99].

These objects cannot be easily manipulated by a program when one uses the
previous geometric definitions. That is why a notion of dual grid, the de Bruiyn grid
[dB81], has been introduced. However, this grid still contains geometric information.
We will see in the next section that if we consider this grid as a graph (the adjacency
graph), then some tilings which we want to distinguish give the same graph. The aim
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of this paper is to provide an effective notion of dual graph of a tiling. We will first
present the tilings more formally, and define the adjacency graph we will use. Then
we will obtain a one-to-one correspondence between a class of graphs and 2D-gon
tilings by introducing the notion of graph with origins, and we give an algorithm
which builds the 2D-gon tiling corresponding to a given graph with origins.

2 Preliminaries

Given two vectors v and v’, we will say that v < v’ in the natural order if the
angle between (1,0) and v; is smaller than the angle between (1,0) and v;;;. Let
V = {v1,vq,...,up} be a family of D pairwise non-colinear positive vectors of the
plane. We suppose that for all integer i, v; < v;1; in the natural order. Let M =
{my,my,....,mp} be a family of D positive integers. The integer m; is called the
multiplicity of v;. The 2D-gon P = (V, M) associated to V and M is the region of
the affine plane defined by:

D
{Z Avi, 0 <N <my,m; € M,v; € V}

=1

There exists many equivalent definitions for these objects. For example, a 2D-
gon can be viewed as the projection of a hypercube of dimension D onto the plane.
See [Zie95] for more details. For D=2, the 2D-gons are parallelograms; for D=3,
hexagons; for D=4, octagons; for D=5, decagons; etc. See Figure 1 for an illustration.
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Figure 1: A 2D-gon and its vectors, associated to M = {2,1,1,3,2}. This is a
decagon with sides of length 2,1,1,3,2,2.1,1,3,2.

Given a 2D-gon P = (V, M), a prototile of P is a 2D-gon built using only 2 vectors
in V, each of them with multiplicity 1. Therefore, each tile of P is a parallelogram
defined by two vectors in V', and we will make no distinction between the prototile
viewed as an area and the pair of the indexes of the vectors in V which define it.

Finally, a tiling T of a 2D-gon P = (V, M) is a set of tiles (i.e. translated
copies of the prototiles) which cover exactly P and such that there is no overlapping
between tiles. Therefore, T"is a set of couples, their first component being the pair
of vectors which defines the tile, the second one being a translation. The translations
used in 2D-gon tilings can always be written as a linear combination of vectors in



Vit= ZZ a;v;, a; being an integer between 0 and m;. Two tilings T and T" of two
2D-gons P and P’ are said to be equivalent if T = T', where T and T" are viewed as
sets of couples.

T
Vv, v, v, v, v, v,
Vl

Figure 2: Three tilings of 2D-gons, namely Ty, T5 and T3; T} and T, are equivalent,
whereas T35 is equivalent to none of the others.

Consider for example the three tilings of Figure 2. From left to right, they are
described by :

Tl :{ ({174}? e ] Y {274}7 A A} ?({3’4}7(171’07()))’({2’3}7(170’071)>’ }
{173}’ bl bl bl bl {172}7 bl bl bl
{ {},2}, {1,3{

(1,0,0,0))
(0,0,1,1))
,(0,0,0,1)), ({1,4},(0,0,0,0)), ({2,3},(1,0,0,1)), }
(1,1,0,0))
T, — { {1,2}, (0,1,0,0)), ({1,4},(0,1,1,0)), ({2,3},(0,0,0,0)), }
({245, (0,

Therefore, tilings T and T2 are equlvalent Whlle T, and 75 are not. Let P be a 2D-
gon, and T be a tiling of P. The i-th de Bruin family of T is the set of all the tiles
in T which are built with the vector v;. Moreover, each family can be decomposed
into de Bruijn lines: the j-th de Bruijn line of the i-th family is the set of tiles built
with v; which have 7 — 1 as the i-th component of their translation. Continuing with
our example of Figure 2, we obtain that the first line of the second de Bruijn family
is equal to {({2,4},(1,0,0,0)),({2,3},(1,0,0,1)),((2,1),(1,0,1,1))}. For practical
convenience, we will also say that the j-th line of the i-th family is the a-th line of
the tiling where o = 22;11 my + 7, mg being the multiplicity of the k-th family. We
define f(7) as the index of the vector associated to the i-th line, i.e. f(7) is the number
of the line’s family. See Figure 3 for another example. Notice that two lines in the
same family never have a tile in common, whereas two lines in two different families
always have exactly one tile in common. We will use this fondamental property in
the following.

Before entering in the core of the paper, we need a few more notations, which we
introduce now.

Definition 1 Let P = (V, M) be a 2D-gon. For all k, 1 < k < D we define the k-th
side of P as the set of points:

D
{Z Aivi, Vi< ks di =mi,Vi>k: N =0,and 0 < Mk < m}

=1
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Figure 3: A 2D-gon tiling and three de Bruijn lines (a line is a set of tiles crossed by
a dotted line). A and B are in the same de Bruijn family. A is the third line of the
third family, and B the second line of the same family. C is the first line of the first
family.

Likewise, we define the (k+ D)-th side of P as:

D
{Z Aivi, Vi > ks hi =mi,Vi<k:\=0,and 0 < Mk < m}

=1

Moreover, the hull of P, denoted by H(P), is the union of all sides of P. We will also
say that a tile t is on the i-th side of P if one of the sides of t is included in the i-th
side of P.

We can now introduce the notion of adjacency graph associated to a tiling, which
will be our first step in the definition of graphs in one-to-one correspondence with
2D-gon tilings.

Definition 2 Let T be a tiling of a given 2D-gon P = (V, M), and let n = |T| be
the number of tiles of this tiling. Let m : T — {1,...,n} be a labelling of the tiles
of T. The adjacency graph of T is the undirected graph A(T) = (Vr, Er) where
Vi = {n(t),t € T} and {x(t),7(t")} € Er if and only if t and t' have one side in

common in T. See Figure j for an example.

The adjacency graph of a 2D-gon tiling already encodes much information. How-
ever, the fact that two tilings have the same adjacency graph does not imply that they
are equivalent: for example, one can verify that the tilings 71 and 75 in Figure 2 have
the same adjacency graph. In order to obtain a one-to-one correspondence between
a set of graphs and the set of tilings of a 2D-gon, we introduce now the de Bruijn
graph.

Definition 3 Let A = (V, E) be the adjacency graph of a tiling T of a 2D-gon P.
The de Bruijn graph A" = (V, E, \,v) is a graph with labelled vertices and with a
distinguished vertex v. The label X(t) of t € V is the pair of integers {i,j} such that
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Figure 4: A tiling and its adjacency graph.

the two de Bruijn lines which contain the tile 7='(t) are the i — th and j — th. The
vertex v, called the origin of the graph, is associated to the tile with translation vector

(0,...,0) which is on the 2D-th side of P. (See Figure 5 for an example).
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Figure 5: A tiling and its de Bruijn graph.

Theorem 1 Given the de Bruijn graph of a tiling T, Algorithm 1 constructs a tiling
equivalent to T in time O(n), where n is the number of tiles of T, i.e. the number of
vertices of the graph.

This result shows that all the information contained in a 2D-gon tiling is encoded
in its de Bruijn graph. However, we will see that the de Bruijn graph contains much
more information than really needed to construct the tiling. We will introduce the
graph with origins of a tiling 7', and we will see in the next section that this graph
contains enough information to construct efficiently a tiling equivalent to T.

Definition 4 Let T be a tiling of a 2D-gon, and A = (V| E) its adjacency graph.
The graph with origins associated to T' is G = (V, E,v1,v2), where vy and vy are two
vertices in V' called the origins of G and defined as follows. Let t; be the tile of T
on the 2D-th side of P with translation vector (0,...,0). Let ty be the tile on a side
of P with translation vector (0,...,0,1) if t; in also on the (2D—1)-th side of P, else
the tile on a side of P with translation vector (0,...,0,1,1). Then, vy = m(t1) and
Vo = TF(tQ).



Algorithm 1: Construction of a tiling from its de Bruijn graph.
Input: G = (V, F, )\, v), the de Bruijn graph of a tiling 7'.
Output: A tiling equivalent to 7', given by a list of (tile, translation).

begin

Let {i,7} = Mv)

Set all the vertices as unmarked;

resu < {({f(1), f(1)},(0,...,0)) };

current < {(1,(0,0,...,0))};

Mark v ;

while current £ () ;

do

foreach 7 = (v, trans) in current do

foreach unmarked vertex v' such that (v,v') € E ;

do

Let {7,7} be the label of v, and {7, k} be the label of v';
Let trans’ be a copy of trans;

if not ((i) > £(7) > f(k) or f(E) > f(j) > /(i) then

| Increase the f(i)-th component of trans’ by one;

resu ¢ resu U {({f(7), f(k)},trans’)};

current < current U {(v, trans’) };
| Mark v/;

current <— current \ {v'};

Return (resu);

end

L

Figure 6: Two tilings and their graphs with origins. Notice that, if one removes the
origins, then the two graphs are isomorphic.

Notice that the graphs with origins of the tilings 77 and 75 in Figure 2 are not
isomorphic, as shown in Figure 6. We will show in the following that the correspon-



dence between the graphs with origins we defined and the 2D-gon tilings actually is
one-to-one.

3 Duality

In this section, we give an algorithm which computes the de Bruijn graph of a tiling
from its graph with origins. This correspondence is one-to-one, therefore, together
with Algorithm 1 and Theorem 1 it shows that the graphs we introduced can be
considered as dual of the considered tilings, despite the fact that they contain a
very low amount of information: the graph with origins is reduced to the adjacency
relation with two special marks. Our algorithm has complexity O(n - m), where n is
the number of vertices of the graph, or equivalently the number of tiles of the tiling,
and m is the sum of the multiplicities used to define the 2D-gon.

In order to build the algorithm and prove its correctness, we will first prove some
properties linking tilings of 2D-gons and their graphs with origins. In particular,
a special sub-structure, namely the border, will play a very important role. We
introduce it now, first in the context of tilings, and then in the context of graphs.

Definition 5 Let T be a tiling of a 2D-gon P. Let C C T be the set of tiles of
T which have at least one point in H(P). We define the border of T', denoted by
B(T) = (n(C), E) where (n(t),n(t")) € E if and only if t and t' have one side in
common and if this common side has at least one point in H(P). See Figure 7.
Notice that this is a subgraph of the adjacency graph of T, but it is not the subgraph
induced by C (some edges are missing).

Definition 6 Let G = (V, E) be a graph. The border of G, denoted by B(G) = (V, &),
is the unique shortest self-avoiding cycle in G which contains all the vertices of G of
degree at most 3, if it exists.

(L

Figure 7: Left: a tiling. Right: its border and the border of the adjacency graph. As
one may guess from this drawing, we will see below (Theorem 3) that the border of
the tiling is nothing but the border of its adjacency graph.

The first step of algorithm to construct a tiling equivalent to a tiling T' starting
form the graph with origins of 7" will be to construct its border. We will first show



that the border of T' is nothing but the border of its adjacency graph, and then we
will see how one can compute the border of this graph.

Definition 7 Given a tiling T of a 2D-gon P, afan F of T is a k-tuple (f1, f2, .., fx)
of tiles in T such that for all v between 1 and k:

o fi and f;11 have a side in common,
o NE fi is a point of H(P),
o f1 and [ have one side on the hull of the 2D-gon.

The tiles fi and f are called the extreme tiles of F, and the integer k — 2 is called
the size of F. Moreover, we say that a fan F belongs to the 1 — th side of P if one of
its extreme tiles has a side included in the 1 — th side of P.

Lemma 1 Let T be a tiling of a 2D-gon, and ti,ty be two tiles of T having ex-
actly one point in common and having one side included in a given side of the
2D-gon. The unique shortest path between w(ty) and w(ty) in A(T) is w(f1) =
m(t1), 7(f2), oo, m(fr) = 7(ta), where w(fi) € B(T) for all i and F = (f1,..., fx) is
a fan of T.

Figure 8: A fan and the unique shortest path between its extremities (Lemma 1).

Lemma 2 Let A = (V, E) be the adjacency graph of a tiling T of a 2D-gon P. Let
t be a tile of T on a side of P, and let t' # t be a tile of T on a side of P such
that dist(w(t), (")) is minimal in A. Then, there is a fan F = (f1,..., fr) in T with
fi=tand fr, =1.

Theorem 2 Let T be a tiling of a 2D-gon P = (V, M) with M # {1,1,n}. The
adjacency graph of T has a border.

Theorem 3 The border of a tiling and the border of its adjacency graph are isomor-
phic.

We have now all the preliminary results necessary to write an algorithm which con-
structs the border of the adjacency graph of a 2D-gon tiling (Algorithm 2), which,
from Theorem 3, is equivalent to construct the border of the tiling.



Theorem 4 Given the adjacency graph of a 2D-gon tiling, Algorithm 2 computes its
border in time O(n) where n is the number of vertices of the graph.

We will now show that, when one knows the border of the graph with origins of a 2D-
gon tiling 7', then one can construct the de Bruijn lines of 7' by computing shortest
paths in the graph.

Theorem 5 Let A be the adjacency graph of a tiling of a 2D-gon. Let a and b be
two vertices associated to the extremities of a given de Bruijn line L. There exists
a unique shortest path in A between a and b: a = w(ty),7(t2),....,7(tx) = b with
L == {tl,tg, ...,tk}.

Lemma 3 Let T be a tiling of a 2D-gon, o and 3 be two tiles of T, a being on
the side i and 3 being on the side m + i of the 2D-gon (where m is the sum of the
multiplicities). If a and 3 are the extremities of two different de Bruijn lines, then
there are at least two shortest paths between them in A(T).

Algorithm 2: Construction of the border of the adjacency graph of a 2D-gon
tiling.

Input: G = (V, E,vy,vs) the adjacency graph of a 2D-gon tiling.

Output: The border of G, B((), as an ordered list of vertices.

begin

Let B be the set of vertices in V' of degree< 4;

Let v’ be an element of B such that dist(vq,v’) is minimal;

B + shortest path from v, to v’;

repeat

v + last element of B;

v < element just before v in B;

Let B’ be a copy of B;

repeat
Let v’ be an element of B’ such that dist(v,v’) is minimal;
Remove v’ from B,

until dist(v,v') < dist(v,v') orv' = vy

Add the shortest path from v to v’ at the end of B;

until v/ = vy;

if the second element of B with degree < 4 is not vy then

| Reverse B;

Return(B);

end
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Figure 9: As announced in Lemma 3, there are two shortest paths between a and 3.

Algorithm 3: Construction of the de Bruijn graph of a 2D-gon tiling.
Input: G = (V, E,v1,v2) the graph with origins of a 2D-gon tiling 7' and
B(G) its border.
Output: G' = (V, E, \,v), the de Bruijn graph of T.
begin
1 1
foreach z € B(G) do
if d°(z) <4 then
Bli] ¢ z,i i+ 1, N« N+1;
if d°(z) =2 then
| Bli]+z,i+i+1, N« N+1;

[+ 1;
for a=1to N/2 do
B+ a+ N/2;
build all the shortest paths between Bla] and B[3];
if there is one path then

foreach wvertex v of the path do

L Av) & Av) U{l};

[+ 1+1;

else

| B+ B+1;

Return (V, E, X\, vy);
end

Theorem 6 Given the graph with origins of a 2D-gon tiling T and its border, Algo-
rithm 3 computes the de Bruigjn graph of T in time O(n - m) where n is the number

of vertices of the graph and m s the sum of all the multiplicities which define the
2D-gon.
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Starting from the graph with origins of a 2D-gon tiling 7', it is now clear that
one can construct a tiling equivalent to T' by computing the border of the graph
with Algorithm 2, then compute the de Bruijn graph with Algorithm 3, and finally
obtain the tiling using Algorithm 1. Therefore,we finally obtain the main result of
this paper, by combining Theorems 1, 4 and 6:

Theorem 7 Given the graph with origins of a 2D-gon tiling T', there is an algorithm
which constructs a 2D-gon tiling equivalent to T in time O(m - n), where n is its
number of tiles, and m the sum of the multiplicities of the vectors used to define the
2D-gon.

4 Perspectives

The algorithmic study of tilings of 2D-gons is only at its beginning, and many open
problems still exist. We cited the problem of knowing how many flips have to be done
in order to obtain random tilings with a distribution close to the uniform distribution.
Another important area is the generation of all the tilings of a 2D-gon, and their
enumeration. The encodings with graphs may be used to study these problems. For
example, one may obtain a characterization of which graphs are the graphs associated
to a 2D-gon tiling : these graphs are planar, the degree of each vertex is at most four,
and they may have many other properties which could help in generating and counting
them.

Moreover, 2D-gons are a special class (the dimension 2 case) of a very impor-
tant class of objects, namely zonotopes [Zie95]. These objects can be viewed as
generalizations of 2D-gons in higher dimensions, and they play an important role in
combinatorics and physics. They are also strongly related to matroid theory [RGZ94].
Many studies already deal with these objects, but their algorithmical manipulation
is still a problem, while it would help a lot in verifying conjectures, compute special
tilings, and compute some statistics over them. The results presented here may be
extended to this more general case, leading to other classes of graphs with interesting
properties. Notice however that this generalization is not obvious, since our proofs
deeply use properties related to the dimension 2. It is well known in zonotopes the-
ory that there is a gap of complexity between 2-dimensional zonotopes (2D-gons) and
3-dimensional ones [Zie95].
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A An application: random tilings

Tilings of 2D-gons are an important model of quasicrystals in physics. In this context,
it 1s very important to be able to sample random tilings, which helps the study of
the entropy of the quasicrystal [ BDMWO02]. The sampling uses the key notion of flip:
given a 2D-gon tiling, one may rearrange locally three tiles (which form an hexagon)
in order to obtain a new tiling of the same 2D-gon (see Figure 10).This enables the
generation of tilings of a 2D-gon: it is shown in [EIn97, Ken93| that one can obtain
all the tilings of a 2D-gon from a given one by iterating the flip operation. When one
wants to obtain a random tiling, one then has to choose a particular tiling and then
iterate the flip operation until the obtained tiling can be considered as random. This
notion of when one can stop the process is central when one wants to sample random
tilings with the uniform distribution. It is possible to sample perfectly random tilings
of hexagons because of the distributive lattice structure of the set of all the tilings
[Pro98]. This technique can no longer be used for octagon, but a recent study explains
how long the process has to be continued in order to be as close as one may want of
the uniform distribution [Des01]. For the other 2D-gons, i.e. when D > 4, there are
no known results [BDMWO02].

L L L

Figure 10: A tiling of an octagon (D = 4) (left) and two other tilings of the same
octagon obtained from the first one by a flip (the shaded tiles are the ones which
moved during the flip).

Figure 11: A flip on a 2D-gon, and on its graph.

Therefore, when one wants to sample a random tiling of a given 2D-gon P, the
only solution is to construct a particular tiling of P and iterate the flip operation. To
acheive this, one can use the graphs encodings we proposed above: the flip operation
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can be encoded on the graph, as shown in Figure 11. The vertices which correspond
to the tiles to flip form a triangle in the graph, and conversly, all the triangles in the
graph correspond to a possible flip in the tiling. Moreover, the transformation on the

graph is a local rearrangement of vertices. Notice however that this transformation

depends on the de Bruijn lines involved, and so it is simplier to use the de Bruijn

graph than the graph with origins to compute it. We show in Figure 12 two random

tilings of an octagon and a decagon obtained this way.
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Figure 12: Left: a random tiling of a 16 x 16 x 16 x 15 octagon obtained after 1

million flips.

Right: a random tiling of a 14 x 14 x 14 x 14 x 13 decagon obtained
14

after 1 million flips.



