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Abstract: Starting from some studies of (linear) integer partitions, we noticed
that the lattice structure is strongly related to a large variety of discrete dynamical
models, in particular sandpile models and chip firing games. After giving an
historical survey of the main results which appeared about this, we propose a
unified framework to explain the strong relationship between these models and
lattices. In particular, we show that the apparent complexity of these models can
be reduced, by showing the possibility of symplifying them, and we show how the
known lattice properties can be deduced from this.
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1 Background.

Given an integer n, a (linear) partition of n is a (weakly) decreasing sequence of
positive integers, called the parts of the partition, such that the sum of all the
parts is equal to n. A partition p of n is denoted by (p1, p2, . . . , pk), where each pi
is a part, with pi ≥ pi+1 for all i, pk > 0, and

∑k
i=0 pi = n. The integer k is called

the length of the partition, and the integer p1 is called the height of the partition.
A partition of height at most h and length at most l is said to be included in a
h× l box. Integer partitions are very classical objects of combinatorics, and many
studies about their different aspects appeared [Mac16, And76, Sta97].

Given a partition p of n, there exists a classical representation of p called the
Ferrer diagram of p: it consists in a series of columns of stacked squares such
that the i-th column (from left to right) contains pi squares, for each i. It is
therefore a decreasing sequence of columns of stacked squares, which contains
exactly n squares. For example, if one considers the two partitions p = (4, 3, 3, 2)
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and q = (6, 2, 1, 1, 1, 1) of n = 12, then one obtains the diagrams and
respectively. Notice that these diagrams can be viewed as (halves of) profiles of
sand piles, which we will see is indeed confirmed by physical studies. Therefore,
we will call each square is a grain, and we will say that sometimes one grain may
fall from one column to another.

A binary relation ≤ over a set S is said to be an order if it is reflexive (for
all x in S, x ≤ x), transitive (x ≤ y and y ≤ z imply x ≤ z) and anti-symmetric
(x ≤ y and y ≤ x imply y = x). The set S together with the relation ≤ is then
called a partially ordered set, or simply an order. If x ≤ y is an order, we say that
y is greater than x, or equivalently that x is smaller than y. If x ≤ y and x 6= y
then we write x < y. An element x is covered by another element y if x ≤ y and
if x < z ≤ y implies y = z. We then say that y is an upper cover of x, and x
is a lower cover of y. In other words, y is strictly greater than x and there is no
element in between. An order O is generally represented by a Hasse diagram: a
point px of the plane is associated to each element of O, such that if x ≤ y then px
is lower than py, and there is a line between px and py if and only if x is covered
by y.

An ordered set L is a lattice if any two elements x and y of L have a greatest
lower bound, called the infimum of x and y and denoted by x ∧ y, and a smallest
greater bound, called the supremum of x and y and denoted by x∨y. The infimum
of x and y is nothing but the greatest element among the ones which are lower
than both x and y. The supremum is defined dually. Notice that any finite lattice
has a unique minimal and a unique maximal element. Indeed, if it contained two
minimal elements, then they would not have an infimum and so the set could
not be a lattice (the same holds for the maximal element). The study of lattices
is an important part of order theory, and many results about them exist. In
particular, various classes of lattices have been defined and appear in computer
science, mathematics, physics, social sciences, and others. For more details about
orders and lattices, we refer to [DP90].

A lattice L is distributive if it satisfies the two following distributivity relations:

∀x, y, z ∈ L, x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

∀x, y, z ∈ L, x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
A lattice is a hypercube of dimension n if it is isomorphic to the set of all the
subsets of a set of n elements, ordered by inclusion. Hypercubes are also called
boolean lattices. A lattice is upper locally distributive (denoted by ULD [Mon90])
if the interval between any element and the supremum of all its upper covers is
a hypercube. Lower locally distributive (LLD) lattices are defined dually. Notice
that a distributive lattice is a lattice that is at the same time upper and lower
locally distributive: the intervals between any element and, on the one hand the
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supremum of all its upper covers, and on the other hand the infimum of all its
lower covers, are both hypercubes. Distributive and ULD lattices have a great
importance in the studies of the models we present in this paper, and in lattice
theory in general.

Before entering in the core of this paper, let us give a precise definition of what
we call a discrete dynamical model. At each (discrete) time step, such a model
is in some state, which we call a configuration. Configurations are described by
combinatorial objects, like graphs, integer partitions, and others, and we will not
distinguish a configuration and its combinatorial description. A discrete dynamical
model is then defined by an initial configuration and an evolution rule which says
under which conditions the configuration may be changed, and which describes
the new configurations one may obtain. This rule can generally be applied under
a local condition, and it implies a local modification of the current configuration.
Notice that in the general case the evolution rule can be applied in several places
in a configuration, leading to several configurations. If a configuration c′ can be
obtained from a configuration c after one application of the evolution rule, we say
that c′ is a successor of c, or c is a predecessor of c′, which is denoted by c −→ c′.
We generally consider the set of all the reachable configurations of a given model,
together with the predecessor relation, and we call it the configuration space of the
considered model. If the model always reaches the same fixed point (configuration
from which the evolution rule cannot be applied), we say that it is convergent.

Notice that, if there is no cycle in the configuration space, then the reflexive
and transitive closure of the predecessor relation defines an order between the
reachable configurations: c is smaller than c′ if and only if c′ can be obtained from
c by a sequence of applications of the evolution rule. In this case we will use the
Hasse diagram to represent the configuration space: the initial configuration is at
the bottom of the diagram, and its successor are above it and linked to it by a line
segment. The study of the orders induced over combinatorial objects by discrete
dynamical models is an active area of research, which has already made it possible
to obtain many results.

Note 1.1 Most of the works about discrete dynamical models and orders actually
deal with the order induced by the successor relation instead of the one induced
by the predecessor relation. This order is the dual of the one we use here, i.e. the
order is flipped upside-down. Indeed, the classical convention in discrete dynamical
studies is to put the initial configuration on the top of the drawing, and the final
configuration on the bottom. We have chosen to do the opposite because it is more
natural for the use of order theory. This does not change in any way the results
presented here.

The fact that any finite lattice has a unique maximal element (as noticed
above) implies directly that, if the configuration spaces of a discrete dynamical
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model are lattices then the model always reaches a unique final configuration (i.e.
it converges). But the notion of convergence implied by lattices is stronger: the
fact that a configuration space is a lattice not only implies that any configuration
will lead to the same final configuration, but also that given any two configurations
there is a unique first configuration reachable from both of them (which is their
supremum). This notion of convergence gives in itself much information about
the studied model, and completes the classical notions of convergence like strong
convergence [Eri93].

Moreover, the fact that a configuration space is a lattice makes it possible to
use the many codings and algorithms known about lattices and special classes of
lattices [Ber98]. For example, there exists a generic algorithm which, given any
distributive lattice, gives a random element of this set with the uniform distribution
[Pro98]. Since most of the models we study are models of physical objects, the
possibility of sampling a configuration with the uniform distribution is crucial: it
makes it possible to study the entropy of the system, and it gives an idea of what
the modelized object will look like in the nature.

In this paper, we give a survey of known results concerning the presence of lat-
tices in the context of discrete dynamical models derived from studies of sandpiles.
Indeed, during the last ten years, many results showing that a given model induces
lattices appeared in the litterature. We show in the last section of this paper how
some of these results can be unified in the framework of simple Chip Firing Games,
and how some properties of this model explain the properties already noticed in
the case of other discrete dynamical models.

2 Historical context.

A very classical family of lattices in combinatorics is the Young lattices family.
Given two integers h and l, the Young lattice L(h, l) is the set of all the partitions
included in the h × l box, ordered componentwise: p ≤ q in L(h, l) if and only if
for all i, pi ≤ qi. This ordered set is a (distributive) lattice [Ber71], the infimum
of two partitions p and q being the partition r defined by ri = min(pi, qi), and the
supremum being s defined by si = max(pi, qi). Moreover, L(h, l) can be viewed
as the configuration space of the following discrete dynamical model: the initial
configuration is the empty partition (), which is included in the h× l box for any h
and l. The successors of a partition p are the partitions obtained from p by adding
one grain on one column, under the condition that we still obtain a partition, and
that it remains included in the h× l box. See Figure 1 for an example. Notice that
this is equivalent to the Dyck lattice, i.e. the lattice of the paths from (0, 0) to
(l, h) on a planar grid, with only vertical and horizontal steps. These lattices have
been widely studied, and can be generalized to other kinds of integer partitions,
as shown for example in [Lat00]. They are also related to some special kinds of
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(1)

(2) (1,1)

(3) (2,1) (1,1,1)

(3,1) (2,2) (2,1,1)

(3,2) (3,1,1) (2,2,1)

(3,3) (3,2,1) (2,2,2)

(3,3,1) (3,2,2)

(3,3,2)

(3,3,3)

Figure 1: The (distributive) lattice L(3, 3). From left to right: the representation
by Ferrer diagrams, the representation by k-uplets, and the Dyck paths equivalent.

tilings, but this is outside the scope of this paper.
In 1973, Brylawski studied the set of partitions of an integer n together with

the following order, known as the dominance ordering :

p ≥ q if and only if

i∑

j=1

pj ≤
i∑

j=1

qj for all i.

In other words, a partition p is greater than a partition q if the i-th prefix sum of
p is smaller than the i-th prefix sum of q for all i. In [Bry73], Brylawski proved
that this order is a lattice, denoted by LB(n). Moreover, he proved that the lattice
LB(n) can be viewed as the configuration space of a discrete dynamical model
defined as follows. The configurations of the model are (the Ferrer diagrams of)
the partitions of n, the initial one being the partition (n) (or equivalently a stack
of n grains). The model has two evolution rules: the vertical and the horizontal
one.

• Vertical rule: a grain can fall from column i to column i + 1 if the height
difference between the i-th column and the (i + 1)-th one is at least two.
In other words, p −→ q if and only if there exists an integer i such that
pi − pi+1 ≥ 2, qi = pi − 1, qi+1 = pi+1 + 1, and for all k 6∈ {i, i+ 1}, qk = pk.
Notice that this is equivalent to say that a grain can fall from column i to
column i+ 1 if the series of columns remains (weakly) decreasing.
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• Horizontal rule: a grain can slip from column i to column j if i < j and
the height difference between these two columns is exactly 2, and the height
difference between the i-th and each of the columns between the i-th and
the j-th is exactly 1. In other words, p −→ q if and only if there exists an
integer i and an integer j such that for all i < k < j, pk = pi − 1 = pj + 1,
qi = qk = qj = pk, and for all k 6∈ {i, j}, qk = pk.

These evolution rules are described in Figure 2, and the configuration space LB(7)
is shown in Figure 3. Brylawski proved that any partition of n can be obtained
from (n) by iterating these rules, and that the order induced by the evolution rule
is nothing but the dominance ordering. Moreover, he gave an explicit formula for
the supremum:

sup(p, q) = r if and only if for all j:

j∑

i=1

ri = min(

j∑

i=1

pi,

j∑

i=1

qi).
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Figure 2: The rules of the Brylawski model. Left: the vertical rule. Right: the
horizontal rule.

An important restriction of the model of Brylawski has been introduced later
[GK93]. This model, called Sand Pile Model (SPM), is defined exactly like the
Brylawski model, except that the horizontal rule is not allowed. The configuration
space obtained starting from a column of n grains is denoted by SPM(n). An
example is shown in Figure 3. SPM appeared as a paradigm for the physical
phenomenon called Self-Organized Criticality (soc) [Jen98, Tan93]. It has been
used to study avalanches (the size of real avalanches obeys the same laws as the
avalanches in SPM [Tan93]), and profiles of dunes [Bak97]. It is also related
to distributed computing problems, as shown in [DKVW95]. Here, we will only
consider SPM as an abstract model, its configurations being integer partitions. In
[GK93] it was proved that SPM(n) is always a sub-order of LB(n). Therefore, the
order relation between the partitions in SPM(n) is nothing but the dominance
ordering defined above. Goles and Kiwi proved in [GK93] that SPM(n) is a
lattice, and that the formula for the supremum is the same as the one for LB(n),
given above. Moreover, a characterization of the elements of SPM(n) is given
in [GMP98b]. One may notice that SPM(n) and LB(n) share a large set of
properties. However, they also have many differences. We will detail these later,
but we can already notice that it is proved in [GMP98b] that all the sequences of
applications of the rules from the initial configuration to the final one have the same
length in SPM(n), which is clearly not true for LB(n) (see Figure 3). Some other
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6,1

5,2

4,3 5,1,1

4,2,1

3,3,1

3,2,2

4,1,1,1

3,2,1,1

2,2,2,1 3,1,1,1,1

2,2,1,1,1

2,1,1,1,1,1

1,1,1,1,1,1,1

7

Figure 3: The lattice of all the partitions of 7, namely LB(7). If we restrict
the model to the vertical rule, we obtain the outlined part, which is nothing but
SPM(7).

works gave more informations on the structure of these lattices. In particular, it is
shown in [LMMP01] and [LP99] that both SPM(n) and LB(n) have a self-similar
structure and that a tree can be associated to these sets. Recursive formulae are
given for the cardinals of these lattices, as well as infinite extensions of the model
(leading to infinite lattices).

The surprising fact that all the configuration spaces of the Young model, the
Brylawski model and SPM all are lattices was then noticed and the question of
how much one can modify these models without breaking this property arised.
A series of variations of these models has then been introduced to answer this
question. The first of them was the Ice Pile Model: a grain can slip from a column
i to the column j like in the Brylawski model, but only if j − i is below a given
value k (the length of the horizontal moves is bounded by k) [GMP98b]. The
configuration space of the model started with a column of n stacked grains is then
denoted by IPM(n, k). An example is shown in Figure 4. In [GMP98b], it is
proved that IPM(n, k) is always a sub-order of LB(n). Again, the model induces
a lattice [GMP98b]. This model can be viewed as a generalization of the Brylawski
model as well as a generalization of SPM: LB(n) is nothing but IPM(n, n), and
SPM(n) is nothing but IPM(n, 0). Another generalization of SPM has then been
introduced: L(n, θ) is the configuration space obtained from a column of n grains
when a grain can move from column i to column i + 1 if the height difference
between the two columns is at least equal to θ [GMP98b]. Therefore, SPM(n) is
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nothing but L(n, 2). Notice that θ may be negative, which makes it possible for
the grains to go up (in this case, we do not obtain partitions of n anymore, but
compositions of n, the length of which is restricted to n to avoid infinite moves on
the right). An example is given in Figure 4. Again, the sets L(n, θ) are lattices
for any n and θ [GMP98b].

3,0,0

2,1,0

1,2,0 2,0,1

0,3,0 1,1,1

0,1,2

0,0,3

0,2,1 1,0,2

7

6,1

5,2

4,3 5,1,1

4,2,1

3,3,1 4,1,1,1

3,2,2

3,2,1,1

2,2,2,1

2,2,1,1,1

2,1,1,1,1,1

Figure 4: The configuration spaces IPM(7, 2) (left), and L(3,−1) (right). Notice
that the order IPM(7, 2) is a sub-order of LB(7) shown in Figure 3, which is the
case for any n and k.

These two models were natural extensions of the Brylawski model and of SPM.
They were more general, but the lattice property was still preserved. Therefore,
the investigation continued with stronger modifications of the models. The first
idea has been to allow multiple grains to fall at each time step, leading to the
model CFG(n,m): starting from an initial column of n grains, m grains can fall
from column i to columns i+1, i+2, . . . , i+m (each of them receiving one grain)
if the height difference between column i and i+ 1 is strictly greater than m. See
Figure 5 for an illustration. Clearly, SPM(n) is nothing but CFG(n, 1). Again,
the obtained configuration spaces are lattices [GMP98c]. An example is given in
Figure 6 (left).
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Figure 5: The evolution rule used to obtain CFG(n,m), when m = 3.
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Another idea to modify the behaviour of the models was to consider that the
grains move on a ring (rather than on a line): they can fall from the n-th column
to the first one. Such a variation of SPM, called the Game of Cards, has been
introduced in [DKVW95] and studied from the lattice point of view in [GMP98a].
The game is very simple: it is composed of k players disposed around a table, and
each player can give a card to his/her right neighbour if he/she has more cards than
him/her. Initially, one player has all the cards. An example is given in Figure 6
(right). It is shown that, when the model is convergent, it generates a lattice, and
the initial configurations which make it convergent are characterized. Moreover,
it is shown that, when the model does not converge, the lattice structure is still
present under a slightly modified form [GMP98a].

3
00

2
10

1
20

2
1 0

1
11

20

17,1,1,1

14,2,2,2

11,3,3,3

8,4,4,4

5,5,5,5 8,4,4,1,1,1

5,5,5,2,1,1

Figure 6: Left: the configuration space CFG(n,m) when n = 20 and m = 3.
Right: an example of Game of Cards, with 3 players and 3 cards (the shaded disk
represents the table).

Another similar model was introduced in [Lat01] to study some other kinds of
integer partitions: given two integers n and b, a b-ary partition of n is a k-uplet
(p0, p1, . . . , pk−1) such that

∑k−1
i=0 pi · bi = n. The configurations of this model are

the b-ary partitions of n, and the evolution rule says that a b-ary partition can be
transformed into another one by decreasing its i-th component by b (if it is at least
equal to b) and increasing its right neighbour by 1. The obtained configuration
space is denoted by Rb(n), and it is a (distributive) lattice [Lat01]. See Figure 7
for some examples.

It appeared in these studies that the fact that the considered discrete dynami-
cal models induce lattice structures over their configuration spaces is a very stable
property. Notice however that some natural ideas to extend SPM and the Bry-
lawski model do not preserve the lattice structure. In particular, two dimensionnal
generalizations (the grains move on a planar grid), which seem interesting for the
study of planar partitions, do not preserve the lattice structure. Therefore, we
wondered if one could define a general model having this properties, which would
explain how and when it appears. The first step to answer this question was to ex-
plore the other models defined in the litterature which induce the lattice structure,
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12

9,1

6,2

3,3

0,4

0,1,1

3,0,1

15

9,2

12,1

6,3

3,4 6,0,1

3,1,10,5

0,2,1

9

7,1

5,2

3,3 5,0,1

3,1,11,4

1,2,1

1,0,2

1,0,0,1

Figure 7: Examples of (distributive) lattices of the b-ary partitions of an integer.
From left to Right: R2(9), R3(12) and R3(15).

and then try to determine some general characteristics which may be responsible
for this property. We will now present shortly the variety of models known in
the litterature, and the next sections will be devoted to the explanation of these
properties.

The Edge Firing Game (EFG), also called the source reversal game, has been
defined in various contexts [MKM78, Pre86a, Pre86b]. Given an undirected graph
G = (V,E), one defines an orientation of G as a directed graph G′ = (V ′, E ′) such
that V ′ = V and {v, v′} ∈ E implies either (v, v′) ∈ E ′ or (v′, v) ∈ E ′. The config-
urations of an EFG are orientations of a given graph with a distinguished vertex,
and the evolution rule is the following: if a vertex that is not the distinguished
vertex has no incoming edge, then we can reverse all its (outgoing) edges. Again,
it is shown in [Pro93] that the configuration space of any EFG is a (distributive)
lattice. See Figure 8 for an example.

During the same period, the physicists studied the Abelian Sandpile Model
(ASM) [DM90, DRSV95] introduced in [BTW87]: the model is defined over a
finite two-dimensional grid, each cell containing a number of grains. The evolution
rule then says that a cell which contains at least four grains can give one of them to
each of its four neighbours. Therefore, its number of grains is decreased by four. If
the cell is on the border of the grid, then some grains may fall to the exterior, which
simply stores the grains it receives. See Figure 9 (left) for an example. This model
has many important properties, and has mainly been studied from the algebraic
point of view [DRSV95]. It has been extended by Cori and Rossin in [CR00]: a
number of gains is associated to each vertex of a given undirected connected graph
with a special vertex called the sink. Any vertex except the sink can give a grain to
each of its neighbours if it contains sufficiently many grains (i.e. at least as many
grains as its degree). See Figure 9 (right) for an example. The algebraic properties
of the original model are preserved, and this generalization received much attention
since then. For a survey of the different studies concerning the algebraic properties
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Figure 8: An example of Edge Firing Game. The distinguished vertex is marked
with a black square.

of ASMs, we refer to [Dha98] and [IP98]. A directed extension, very close to
the Chip Firing Game defined below, has been studied in social science by Biggs
[Big97, Big99, Heu99]. The same kind of algebraic studies have been done on this
model, showing similar properties.

Independently, Björner, Lovász and Shor introduced the Chip Firing Game
(CFG) in [BLS91, BL92]. It is defined over a directed (multi)graph as follows: a
configuration of the game is a distribution of chips on the vertices of the graph,
and a configuration can be transformed into another one by transferring a chip
from one vertex along each of its outgoing edges, if it contains at least as many
chips as its outgoing degree. See Figure 10 for an example. Convergence conditions
(involving the number of chips or the structure of the graph) are given in [BLS91,
BL92, LP01], as well as different proofs of the fact that the configuration space
of any convergent CFG is a lattice. Notice that the ASM can be viewed as a
special case of the CFG (concerning the configuration spaces), which implies that
any ASM induces a lattice. Actually, we will see in the next section that most of
the models we have presented here are special cases of CFG, and we will explain
in Section 4 how the lattice property can be understood as a consequence of a
stronger property of Chip Firing Games.
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Figure 9: Left: an example of the original Abelian Sandpile Model on a 4× 3 grid.
Right: an example of the generalized Abelian Sandpile Model on a graph (the sink
is the shaded vertex).
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Figure 10: The configuration space of a CFG.
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3 The Chip Firing Game as a general model.

In this section, we show how most of the models presented in the previous section
are actually special cases of Chip Firing Games, which implies that some of their
properties (in particular the fact that their configuration spaces are lattices) can
be deduced from properties of Chip Firing Games. To achieve this, we will give
for each instance of a model an instance of a Chip Firing Game such that its
configuration space is isomorphic to the one of the original model. We will not
give the details of the proofs of these isomorphisms: they are obvious from the
construction of each simulation. Since it is known from [BLS91, BL92, LP01] that
the configuration space of any convergent CFG is a lattice, and even an Upper
Locally Distributive (ULD) lattice, we obtain as corollaries the known results
about the lattice structures of the configuration spaces of all these models, adding
the fact that they are ULD lattices. This makes it possible to understand the
fact that a large variety of models induce lattices as a consequence both of the
expressivity power of CFG (many models can be simulated by a CFG), and of
some strong properties of CFG (they always induce ULD lattices).

The Young lattice L(h, l) can be obtained as the configuration space of the
CFG defined over G = (V,E) with V = {1, 2, . . . , l} and E = {(i, i + 1) | 1 ≤
i ≤ l − 1}. To a partition p in L(h, l), we associate the configuration of the CFG
where vertex i contains pi+1− pi chips (see Figure 11). Notice that this model can
also be simulated by an EFG as follows: let us consider the decreasing boundary
of the Ferrer diagram of a partition p in L(h, l). This boundary contains exactly l
horizontal step and h vertical ones. Now, let us replace each horizontal step by an
edge directed from left to right, and each vertical step by an edge directed from
right to left. See Figure 11 for an example. One can easily check that running this
EFG is equivalent to the Young model we started with.

0 21 0

1 101

1 2 001 2 00

Figure 11: In the middle, a transition in the Young model, simulated left by an
EFG and right by a CFG.

SPM can be encoded as a CFG in the following way: let n be the number of
grains in the system. Then, consider the graph G = (V,E) where V = {0, 1, . . . , n}
and E = {(i, i + 1)|1 ≤ i ≤ n− 1} ∪ {(i, i − 1)|1 ≤ i ≤ n}. We associate to each
partition p in SPM(n) the following repartition of chips on this graph, denoted
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by π(p): the vertex number i contains pi − pi+1 chips. Now, if we play the CFG
defined over G with configuration π(p) for a given p in SPM(n), it is clear that the
successors of this configuration are the elements of {π(p′), p −→ p′ in SPM(n)}.
See Figure 12 for an illustration of this. Therefore, if we play the CFG on this graph
starting from the configuration π((n)), we obtain a configuration space isomorphic
to SPM(n). This coding was first developed in [GK93]. Notice that it is easy to
reconstruct a configuration p in SPM(n) from a configuration of the CFG.

0 0 1 12

0 2 0 11

Figure 12: Coding of the Sand Pile Model with a Chip Firing Game.

L(n, θ) can be encoded as a CFG in the same way, except that each vertex of
the CFG contains pi− pi+1 − θ+ 2 chips if p is the corresponding configuration of
L(n, θ) (see Figure 13).

0 4 1 82

1 5 1 80

0 2 2 83

Figure 13: Coding of L(n, θ) with a Chip Firing Game when θ = −1.

The underlying (multi-)graph of the CFG that simulates CFG(n,m) is dif-
ferent: V = {0, 1, . . . , n} and each vertex i has m outgoing edges (i, i − 1) and
another outgoing edge (i, i+m). See Figure 14 for an illustration. A configuration
p of CFG(n,m) is then equivalent to a configuration of the CFG where vertex i
contains pi − pi+1 chips for each i.

The Game of Cards can be simulated by the following CFG. Its graph is a
ring of k vertices: the i-th vertex has an outgoing edge to vertex i + 1 modulus
k and another one to i − 1 modulus k. Then, a configuration c of the game is
encoded by a configuration of the CFG where vertex i contains as many chips as
the difference between the number of cards of player i and the number of cards
of its right neighbour plus 1. Notice that this coding is quite different from the
previous ones, since the graph of the obtained CFG is a cycle.

To obtain a configuration space isomorphic to Rb(n), one has simply to consider
the CFG defined over the following multigraph. The vertex set is V = {0, 1, . . . , n},
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0 2 1 1 10

0 0 3 1 0 1

Figure 14: Coding of CFG(n,m) with a Chip Firing Game when m = 2.

CFG

ASM

Rb(n)

YoungSPM

EFGIPM(n, k)

Brylawski Game of Cards

L(n, θ)CFG(n,m)

Figure 15: The diagram of the simulations between the models we have discussed.
The most general models are on the top, while the more specific ones are on the
bottom. Notice that almost all the models we have presented can be simulated by
a CFG.

vertex i for 1 ≤ i ≤ n−1 having b−1 outgoing edges to vertex 0 and one outgoing
edge to i + 1. If one starts this CFG from the configuration where vertex 1
contains n chips, all the other ones being empty, then it is clear that the obtained
configuration space is isomorphic to Rb(n).

As already noticed, any ASM can be simulated by a CFG. The simulation of
an Edge Firing Game with a CFG is less obvious. Let us consider an EFG defined
over the undirected graph G = (V,E) with distinguished vertex ν, and with the
initial orientation O. It is clear that the configuration space of the following ASM
is isomorphic to the one of the EFG: the ASM is defined over G with sink ν, and
its initial configuration is the one where each vertex v contains as many grains as
the number of outgoing edges it has in O. Since any ASM can be simulated by a
CFG, any EFG can itself be simulated by a CFG.

We can summarize the simulations results given in this section by the diagram
of Figure 15. This is the diagram of the order over the models we have cited
above, defined as follows: a given model is smaller than another if the former can
be simulated by the latter. Notice that almost all the models we have presented
can be simulated by a CFG.

On the other hand, let us emphasize on the fact that the general results on
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CFGs can be used to prove that a given set is a lattice: it suffices to give a CFG
such that its configuration space is isomorphic to the considered set. Likewise, one
can prove that a given set is a distributive lattice by proving an isomorphism with
the configuration space of an EFG. This technique has for example been applied in
[BL01] in the context of tilings. This is a new and original proof technique, which
is very interesting for the order theoretical point of view.

Notice that not all models presented in the previous section can be encoded
as special CFGs. This can easily be seen because models like LB induce lattices
which are not ULD, but this can also be understood by studying the proof tech-
niques used to show that these models induce lattices. On the one hand, the
proofs that the Chip Firing Games and the models which can be encoded as CFGs
induce lattices is based on the notion of shot-vector : for a CFG with vertex set
{v1, . . . , vn}, the shot-vector of a firing sequence s is the vector (a1, . . . , an) such
that, for all i, ai is the number of times the vertex vi is fired during the sequence s.
It is proved in [LP01] that the configurations of a CFG and the shot-vectors of its
firing sequences are in one-to-one correspondence, and that the order on the con-
figurations corresponds to the componentwise order on the shot-vectors. This is
the fundamental property which makes it possible to prove that the configuration
spaces of these models are ULD lattices.

On the other hand, for models like LB or IPM , the proof that they induce
lattices uses an explicit formula for the upper bound of two given configurations.
The lattices induced by these models are less structured than ULD lattices, but
it is possible to give an explicit formula for the final configuration, as well as a
characterization of all elements of the configuration space, and the length of the
longest path from the initial to the final configuration.

4 The Simple Chip Firing Game

We have seen in the previous section that the Chip Firing Game can be viewed
as a generalization of many other models. Therefore the study of CFGs takes a
special importance, because any of its property is shared by these models, and a
good understanding of CFGs will help understand the other ones. In this section
we introduce a new notion about CFG, the simple CFG. We will see that any
CFG is equivalent (in terms of configuration space) to a simple CFG. We use this
result to give a new proof of the fact that the configuration space of any CFG
is a ULD lattice in a natural and straightforward way. This shows how a good
understanding of the CFG allows to state natural proofs about the model. Most
of the results exposed in this part can be found in [MPV01].

Definition 4.1 A convergent CFG is simple if each of its vertices is fired at most
once during any firing sequence that, starting from the initial configuration, reaches
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the final configuration.

Notice that any simple CFG is necessarily convergent. We will say that two CFGs
are equivalent if their configuration spaces are isomorphic. In the sequel, we will
denote by L(C) the configuration space of any convergent CFG C. The next
theorem states that any convergent CFG is equivalent to a simple one. This will
allow the study of CFGs through the use of simple CFGs, without loss of generality.

Theorem 4.2 Any convergent CFG is equivalent to a simple CFG.

Proof : The idea of the proof is the following: if a CFG is not simple, then it
contains a vertex a which is fired more than once between the initial and final
configuration. We will replace a by two vertices a1 and a2. They will be fired
alternatively, first a1, then a2, and so on, and one of them will be fired each time a
was fired. Each of the new vertices a1 and a2 will be fired less often than a between
the initial and the final configuration. Therefore, by iterating this process, we will
eventually obtain a simple CFG.

Before giving the formal description of this transformation, we will explain
two things: how vertex a can be replaced by two different vertices that will play
its role, and how we can guarantee that the two vertices a1 and a2 will be fired
alternatively. The way to replace a by two vertices is to split all the chips that are
in a in the initial configuration, or will arrive in a through incoming edges, into
two halves, and put one half in each vertex a1 and a2. This means that the initial
configuration of a1 and a2 will be half of the initial configuration of a, and there
will be half as much edges coming in a1 and a2 as in a. Of course this cannot
always be done immediately because a might have an odd number of incoming
edges (or contain initially an odd number of chips). Our first step is therefore
to double everything in our CFG: chips and edges. We obtain then a new CFG,
which we will call the double of the original CFG. It is clearly equivalent to our
first CFG, and all the number of edges and chips are even. We can then distribute
evenly the chips and incoming edges of a on a1 and a2.

Now for the outgoing edges: each firing of a1 or a2 must play the role of a
firing of a for the other vertices. Therefore a1 and a2 must have as much outgoing
edges as a (in the doubled CFG). This can seem to create a lack of chips in a1

and a2 (each of them has as much outgoing edges as a, but only half as much
incoming edges), but this will be corrected by the process that guarantees that the
two vertices are fired alternatively: let d be the initial outdegree of a, and let N
be twice the number of chips in the original CFG. We place N − d edges from a1

to a2 and as many from a2 to a1. We also place in the initial configuration N more
chips in a1 than in a2. This guarantees that a2 cannot be fired before a1: because
of the large number of edges from a2 to a1, there are not enough chips in the game
to gather enough chips in a2 if a1 keeps its initial number of chips. When a1 is
fired, it sends 2d chips to the successors of a, and N − d chips to a2. a1 has lost

17



N + d chips, therefore it contains now as much chips as a in the corresponding
configuration of C, and a2 has gained N − d chips, therefore it contains N more
chips than a in the corresponding configuration. This takes care of the apparent
lack of chips we spoke of above. Now, it will not be possible to fire a1 again before
a2 is fired, for the same reason that it was not possible to fire a2 before a1 in the
first place. This sketch is incomplete, because it is not correct in the case where
there are loops on a. Now we give the formal description of the transformation
(which is correct in all cases).

Let C be a non simple CFG, defined on a graph G = (V,E), and with initial
configuration σ, and let a be a vertex that is fired twice or more between the
initial and final configuration in C. For a vertex v, we denote by l(v) the number
of loops on v. We denote by d>G(v) the number of edges going out of v that
are not loops (i.e. d>G(v) = dG

+(v) − l(v)), and we define dually d<G(v). The
CFG C ′, defined on the multi-graph G′ = (V ′, E ′) and initial configuration σ′

is defined in the following way. Let N be twice the number of chips in C. Let
V ′ = V \{a} ∪ {a1, a2}, with a1, a2 6∈ V . E ′ is defined by:

• for each v, w ∈ V \{a}, if there are n edges(v, w) in E, then there are 2n
edges (v, w) in E ′.

• for each edge (v, a), v 6= a in E, there is one edge (v, a1) and one edge (v, a2)
in E ′

• for each edge (a, v), v 6= a in E, there are two edges (a1, v) and two edges
(a2, v) in E ′

• for each loop (a, a) in E, there is one loop (a1, a1) and one loop (a2, a2) in E ′

• there are N − dG>(a) edges both from a1 to a2 and from a2 to a1.

Moreover, for all v 6= a, σ′(v) = 2σ(v), σ′(a1) = σ(a) +N , and σ′(a2) = σ(a).
Figure 16 illustrates the construction. We will prove the following property:

every configuration of C ′ is such that either a1 contains N chips more than a2, or
a2 contains N chips more than a1. This is true for the initial configuration. Since
for each v 6= a1, a2, there is the same number of edges from v to a1 as from v to a2,
the firing of any other vertex that one of the ai does not change this property. Let
us suppose now that we can fire one of the vertices ai, for instance a1. Let x be the
number of chips in a2. The fact that a1 can be fired implies that a1 is the vertex
that contains N chips more than the other, therefore there are N + x chips in a1.
After the firing of a1, there are N + x− 2 · dG>(a)− (N − dG>(a)) = x− dG>(a)
chips in a1, and N + x− dG>(a) in a2. Therefore the property is verified.

To prove that L(C ′) is isomorphic to L(C), the only thing that remains to show
is that one of the vertices a1 or a2 can be fired in C ′ if and only if a can be fired
in the double of C. We recall that always one of the vertices a1 or a2 contain N
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σ(a)
a

C

−→
N − d

N + σ(a) σ(a)

2d 2d

a1 a2

C ′

N − d

Figure 16: Simplification of a CFG

chips more than the other. This vertex can be fired if and only if it contains more
than dG

+(a) +N chips. Then the sum of the number of chips in a1 and a2 is more
than N + 2 · d+

G(a) chips. In the corresponding configuration of the double of C, a
contains then more than 2 · d+

G(a) chips, which means that a can be fired.
By this method we obtain a CFG C ′ where the vertices a1 and a2 are each

fired less often than in the initial CFG. By iterating this procedure, we eventually
obtain a simple CFG equivalent to C. 2

This theorem makes it possible to only consider simple CFGs in the following.
Notice however that in [Eri89] it is shown that a convergent CFG may need an
exponential number of firings with respect to the number of its vertices to reach its
stable configuration. Therefore, given a non-simple CFG C, the number of vertices
of an equivalent simple CFG can be exponential in the number of vertices of C.
The purpose of introducing simple CFGs is not to be algorithmically efficient, but
to introduce simple and natural proofs.

Given any simple CFG, we can associate to each firing sequence the set of
vertices fired during the sequence. Then, it is obvious that if two sequences starting
from the same configuration σ have the same set of vertices, then they lead to the
same configuration σ′. The following theorem shows that the converse is also true.

Theorem 4.3 Given a simple CFG C, if, starting from the same configuration,
two sequences of firings s and t lead to the same configuration, then the set of
vertices fired during s and t are the same.

Proof : Let C be a simple CFG with support graph G = (V,E), and let s and t
be two firing sequences leading from a configuration σ to a configuration σ ′. Let
X and Y be the sets of vertices fired in s and t respectively, and suppose X 6= Y .
We can suppose without loss of generality that X \ Y is not empty. The sequence
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s begins by a (possibly empty) sequence s1 of vertices in X ∩ Y , followed by the
occurence of a vertex v ∈ X \ Y . This means that, after the firing of all the
vertices of s1, v contains more chips than its outdegree. Now if we go from σ
to σ′ following the sequence t, all the vertices of X ∩ Y are fired in the process,
therefore all the vertices of s1 are fired. From this we conclude that, after the
firing of all the vertices of Y , the vertex v can be fired, which means that v can
be fired in configuration σ′. Since configuration σ′ can be obtained after the firing
of all vertices of X (including v), and since v can be fired in configuration σ ′, we
conclude that v can be fired at least twice. This is impossible, because C is simple.
Therefore we must have X = Y . 2

This allows us to define the shot-set s(σ) of a configuration σ as the set of the
vertices fired to reach σ from the initial configuration. We will say that a subset X
of the vertex set of a CFG is a valid shot-set if its vertices can be ordered as a valid
firing sequence. The configurations and the valid shot-sets of any CFG are in a one-
to-one correspondence: a valid shot-set corresponds to a unique configuration. In
the next lemma we show that this correspondence induces in fact an isomorphism.

Lemma 4.4 The configuration space of a simple CFG is isomorphic to the set of
its shot-sets, ordered by inclusion.

Proof : Let C be a simple CFG, and let σ and σ′ be two configurations such that
σ′ can be reached from σ by a firing sequence using the vertices v1, . . . , vn. Then
we have s(σ′) = s(σ) ∪ {v1, . . . , vn}. On the other hand, if we have s(σ) ⊆ s(σ′),
then there exists a sequence of firings leading from σ to σ ′: the vertices of s(σ)
can be fired first because s(σ) is a valid shot-set, then the vertices of s(σ ′) \ s(σ)
contain at least as many chips as before, and so they can be fired in the order in
which they appear in any firing sequence that reach σ ′ starting from the initial
configuration. 2

This is a very helpful result, because many results can be proved much more
simply if we work on the shot-sets instead than on the configurations themselves.
An example of this approach can be seen in the next theorem:

Theorem 4.5 The configuration space of a simple CFG is a ULD lattice.

Proof : We recall that any set of sets ordered by inclusion having a unique minimal
element, and closed under union, is a lattice. We will prove that the set of the
shot-sets of any simple CFG is closed under union: let X and Y , X 6= Y , be two
valid shot-sets of a simple CFG C. We can suppose without loss of generality that
X \Y is not empty. Let s and t be two valid firing sequences using all the vertices
respectively of X and Y . These sequences have a common beginning s1, possibly
empty. After s1, the sequence s is continued with a vertex x ∈ X \ Y . We claim
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that Y ∪ {x} is a valid shot-set of C: indeed, since x is not fired during t, the
number of chips it contains does not decrease during this sequence, and since x
can be fired after the sequence s1, it can still be fired after the whole sequence t.
Therefore Y ∪ {x} is a valid shot-set of C, and we can extend this reasonning to
show that X ∪ Y is a valid shot-set. Since the set of the shot-sets of a convergent
CFG has a unique minimal element (the empty set, corresponding to the initial
configuration), and is closed under union, it is a lattice.

Now we show that the configuration space of any convergent CFG is a ULD
lattice: if in a given configuration σ, with shot-set s, n different vertices v1, . . . , vn
can be fired, then the firing of one of them does not impede the firing of the others.
From this we conclude that any subset of s ∪ {v1, . . . , vn} is a valid shot-set. The
shot-set of the supremum of all the upper covers of σ is s∪{v1, . . . , vn}. Therefore
the interval between σ and the supremum of its upper covers is a hypercube of
dimension n. This is the definition of ULD lattices. 2

Since any convergent CFG is equivalent to a simple CFG, we have immediately
the following corollary:

Corollary 4.6 The configuration space of any convergent CFG is a ULD lattice.

Notice that the bijection between the configurations and the shot-sets is very
convenient, because it does not only provide a simple way to prove that the con-
figuration space of a CFG is a lattice, it also provides a simple formula for the
upper bound. Indeed, for any two configurations a and b of a CFG, we have:

s(a ∨ b) = s(a) ∪ s(b).

5 Conclusion and perspectives

We have presented in this paper the study of the structure of the configuration
spaces of some models which generate lattices. This study started with the study of
some sandpile models and the two simple evolution rules of the Brylawski model.
It has then been continued for some time with the models obtained by making
modifications of these rules. This has given rise to the models SPM, IPM, L(n, θ)
and CFG(n,m), which also generate lattices. This shows that the lattice structure
is inherant to these models, and cannot be broken easily by changing the rules.

One other model which also is a representation of some sand piles phenomena,
the Chip Firing Game, was studied with the same idea. It was proved that it
generates lattices, and that it is a generalization of SPM, L(n, θ), CFG(n,m)
and others: these models can be encoded as special CFGs. This has given to
the CFG a special importance among all these models, and it was studied in the
attempt to determine why lattices appear in this context, and which properties
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they share. During this study a very special class of CFG has arisen, the simple
CFGs. These are the CFGs such that the evolution rule is applied only once to
each vertex between the initial and final configurations. It was proved that any
convergent CFG is equivalent to a simple CFG. This makes it possible to study
the lattice structure of these models much more easily. The original proof that
CFGs generate lattices used the same kind of techiniques as the proofs previously
made for other models. With the simple CFGs, a new proof was devised, which
was more natural and more in agreement with the structure of CFGs. This gives a
better understanding of why the CFGs, and at the same time all the models that
can be encoded as CFGs, induce lattices.

There are many directions of research for further work. We present them now,
including some which have already been the subject of some attention.

Different classes of lattices

We have seen that some models can be encoded as special CFGs. However, this
cannot be done for the Brylawski model: all the lattices induced by CFGs are
ranked, i.e. all the paths from the minimal to the maximal element have the same
length, whereas lattices induced by the Brylawski model are not. Therefore some
attempts have been made on the one hand to characterize exactly which lattices
can be obtained by CFGs. Such a characterization can help to decide whether a
given model is a particular case of the CFG or not: if not all the configuration
spaces it induces are in the class L(CFG) of lattices induced by CFG, then we
know that we cannot find an encoding of this model as a CFG. In [MPV01] it has
been proved that L(CFG) is not the whole ULD class (i.e. there exists a ULD
lattice which is the configuration space of no CFG), but contains the class D of
distributive lattices. This is an interesting result from the lattice theory point of
view, since the distributive and ULD lattices classes are very close to one another,
and there is no known lattice class between these two. As already discussed, the
Abelian Sandpile Model can be seen as a particular case of the Chip Firing Game,
therefore the class L(ASM) of lattices induced by ASM is included in L(CFG).
In [Mag01] some attempts have been made to define this class more precisely, and
it has been proved that L(ASM) is another class between the distributive and the
ULD lattices. To summarize these results, we have the following relations:

D  L(ASM)  L(CFG)  ULD.

We have seen that, among the other models presented in this paper, some of them
are generalizations of others, which implies some inclusion relations between the
classes of lattices they induce. Figure 17 summarizes these relations. It emphasizes
the complexity of the characterization problems in lattice theory. The two classes
L(CFG) and L(ASM) have not been characterized exactly. Finding an algorithm

22



CFG

ULD

ASM

SPM IPM

LB

Young

Rb

D

L(n, θ)

CFG(n,m)

Figure 17: The classes of lattices induced by various models

to decide if a given lattice is induced by one or more of these models is a challenge
both for the study of discrete dynamical models and for lattice theory.

Generalizations of the models

Another direction of research is the extension of the models we have studied to
a more general model (in the same manner as the CFG is itself an extension of
SPM). The CFG is for the time being the most general of the models we have
studied, therefore it makes sense to try to start from it to obtain a generalization
of the Brylawski model. Indeed, SPM and LB are very close to one another in
their definition, and the study of a model that represents them both would help
to understand their specificities better. In [MPV01] a generalization of the CFG,
the coloured Chip Firing Game, has been presented. It generates exactly the ULD
class. Therefore it cannot simulate the Brylawski model (since the lattices LB(n)
are not ULD), and the model needs to be extended further.

Infinite extensions

Another natural idea to extend the model is to consider that there is an infinity
of grains. Some work has been done about this in [LP99, LMMP01, Lat01], where
SPM , LB and Rb are started with an infinite first column. The configuration
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spaces of such models are ordered as infinite lattices. It has also been proved
that they can be represented by inifinite trees, which emphasizes their strong self-
similarity. This work has only been done with linear models, and the same kind of
study on more complex models like the Chip Firing Game or the Abelian Sandpile
Model may lead to interesting results.

Some of the models we have presented are always convergent (mainly the linear
models), and some are not. CFGs, for instance, may have cycles in their config-
uration spaces, and therefore they may stay in the cycle forever. It is shown in
[LP01] that the configuration spaces of such models can be seen as infinite lattices,
which share the same main properties as in the convergent case. For instance, in-
finite lattices induced by non-convergent CFGs are also ULD. The study of the
configuration spaces of non-convergent models has not been deepened further, and
would be a natural complement of the study of convergent ones. Another idea
is to consider models with inifinite configurations, for instance CFGs on infinite
graphs.

Algebraic properties

In all the studies presented above, the configuration space of the models and its
structure were studied. No special interest was given to the configurations of the
models themselves. For the Abelian Sandpile Model it is known [DRSV95] that
some special stable configurations, called the recurrent configurations, form an
abelian group. This algebraic aspect of the model has given rise to many interesting
studies [CR00, Dha98, IP98]. However, these studies are entirely independent
of the studies of the configuration spaces we presented here. Combining these
two aspects would surely give a much better understanding of the models, and is
probably one of the most important directions for further work.

Tilings problems

Finally, some other kinds of discrete dynamical models appear in the context of
tiling theory: for some classes of tiling problems, one can define a local rearrange-
ment of tiles, called flip, which transforms a tiling of a given region into another
tiling of the same region. In some cases (mainly tilings with dominoes or with
three lozenges [Rem99, BL01]), it has been proved that the flip relation gives the
distributive lattice structure to the set of all possible tilings of a given region.
In [BL01] a notion of tiling on graphs is introduced as a generalization for these
problems. These tilings of graphs have the particularity that the set of all possible
tilings is ordered as a union of distributive lattices by the flip relation. The proof
of this uses height functions, like the original proofs for the particular cases. In
[BL01] it is also proved that height functions can be viewed as special Edge Fir-
ing Games. This proves that the study of discrete dynamical models exposed in
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this paper can have applications in a great scope of seemingly unrelated problems.
We are only at the beginning of this study with a goal of generalization to other
problems in mind.
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