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Abstract—Complex networks, modeled as large graphs, re- This makes the notion of fundamental properties of complex
ceived much attention during these last years. However, data on networks a key issue for current research in this field. For

such networks is only available through intricate measurement recent survevs on tvpical properties and related issuesoge
procedures. Until recently, most studies assumed that these pee- . y yp brop 05
instance [15], [14].

dures eventually lead to samples large enough to be representativ .
of the whole, at least concerning some key properties. This has However, most real-world complex networks are not directly

crucial impact on network modeling and simulation, which rely available: collecting data about them requires the use of a
on these properties. ) _measurement procedure. In most cases, this procedure is an
Recent contributions proved that this approach may be mis- yyicate operation that gives partial and possiblybiased

leading, but no solution has been proposed. We provide here . o h . .
the first practical way to distinguish between cases where it is view. Most contributions in the field then rely on the followi

indeed misleading, and cases where the observed properties may(often implicit) assumption: during the measurement proce
be trusted. It consists in studying how the properties of interest dure, there is an initial phase in which the collected datg ma
evolve when the sample grows, and in particular whether they not be representative of the whole, lutien the sample grows
reach a steady state or not. . one reaches a steady state where the fundamental properties
In order to |IIu_strate this method and to demonstrate its rele- d t eAuth theref bal ¢
vance, we apply it to data-sets on complex network measurements 0 no V?“Y anymoreauthors thereiore grab a largeé amoun
that are representative of the ones commonly used. The obtaide Of data (limited by the cost of the measurement proceduet, an
results show that the method fulfills its goals very well. We by the ability to manage the obtained data) and then suppose
moreover identify some properties which seem easier to evaluate that the obtained view is representative of the whole, atlea
n practlce, thus opening |nterest|ng perspectlves. Concerning these properties.
Until recently, very little was known on the relevance of
this approach, which remains widely used (because in most
|. CONTEXT. case there is no usable alternative method). This has losy be
Complex networks of many kinds, modeled as large graptignored, until the publication of some pioneering conttidis
appear in various contexts. In computer science, let us cjg85], [10] showing that the bias induced by measurement
internet maps (at IP, router or AS levels, see for instan8g [2 procedures is significant, at least in some important céfsiss.
[26], [19], [1]), web graphs (hyperlinks between pages,fsee now a research topic in itself, with both theoretical, erigpir
instance [33], [16], [11], [12], [5]), or data exchanges|fier- and experimental studies; see for instance [35], [10], [E8],
to-peer systems, using e-mail, etc, see for instance [30], [ [20]*. In this stream of studies, the authors mainly try to
[39], [29]). One may also cite many examples among sociddentify the impact of the measurement procedure on the ob-
biological or linguistic networks, like co-authoring netiks, tained view and to evaluate the induced bias. The central ide
protein interactions, or co-occurrence graphs for insgtanc  first introduced in [35], [10], is to take a gragh (generally
It appeared recently (at the end of the 90s [51], [23bbtained from a model or a real-world measurement), siraulat
[33], [7], [16]) that most real-world complex networks havea measurement daf thus obtaining the viewi’ and compare
nontrivial properties which make them very different fronet G and G’. This gave rise to significant insight on complex
models used until then (mainly random, regular, or completetwork metrology, but much remains to be done.
graphs and ad hoc models). This lead to the definition of
a set of statistics, the values of which are considered as Il. APPROACH AND SCOPE
fundamental properties of the complex network under cancer o _
This induced in turn a stream of studies aimed at identifying OUr contribution belongs to the current stream of studies
more such properties, their causes and consequences, Yhdeal-world complex networks, and more precisely on the
capturing them into relevant models. They are now used &gasurement of these networks. It addresses the issue of the
key parameters in the study of various phenomena of inter€§fimation of their basic properties, with the aim of pravid
like robustness [8], [32], spreading of information or Ges & practical solution to this issue. Indeed, until now, authors
.[46]’ [25], and protocol performz_ince [41], [30], [50], [28r INote however that, because of its importance and because #sunee
instance. They are also the basic parameters of many NetwQgst can be quite easily modeled, the case of internet meastisemih
models and simulation systems, like for instamsaTE [42]. tracerout e received most attention.



studying real-world complex networks had no choice but force us to use important capacities in central memory and in
follow the classical assumption that their sample is larggocessing power: algorithms with a time or space cost more
enough to be representative of the whole, even though thign linear in the number of nodesand/or linksm are almost
has been proved to be far from obvious [35], [10], [6], [28]unusable in this context We will therefore carefully choose
[20]. We will make it possible to evaluate the relevance @ ththe algorithms we use in our computations, and discuss their

classical assumption in practical cases. complexities all along the papér
We notice that the vast majority of real-world complex net-
work studies rely on samples obtained through a measurement 1. M ETHOD AND DATA-SETS

procedure that idnterrupted when the obtained sample is i ] ]
considered large enougto be representative of the whole. 10 @chieve our goal, we need data in the following form:
Then, we mimic this by processing very large measureme/@¥en a real-world complex network measure.me.nt, for each
of real-world complex networks: we study what the observed@€gern we need the graph one would obtain if this mea-
properties would be if one had stopped the measurement wisétiement had been stopped as soonasodes had been
the sample had reached a given size, smaller than the final dfigcovered. We then compute the properties under concern
The main strength of this approach is that it reliesreal for each of these graphs, obtaining plots of their value as a

measurements of complex networks, while previous works hitfiction of the sample size®.

to model the complex network under concern, the measureOUr data-sets are derived from raw data on how complex
ment process, or both, see for instance [35], [6], [28], [20 etworks are measured, whlcr_l we descnpe below. They come
Such a modeling is a challenging task since the measuremt&Af Some of the largest and highest quality data-sets atlyre
procedure generally is intricate, and since we do not knaw tAvailable, and span quite well the variety of complex neksor
underlying complex network that we actually measure. Wisually considered in computer science. From this raw data,
avoid these problems here since we rely on real-world dat4® first extracted, for each node and link, the time at which it

obtained in a way that is representative of what is done WS discoveretl Then we wrote a program that runs through
practice. this stream of node and link arrivals (ordered by the time

This also means that measuring the same complex netwo?‘l&sWhiCh they are discovered) until the sample reaches the

but in another way, and/or measuring other complex networl?srescr'bed 5|hzez/, and then compur:es the desired stat|st|c?. 't
may lead to different results. This is why we paid high atten- Because these data-sets and the program may be useful for
tion to use measurements that are representative of the oA PUrPose, and because they are needed to reproduce our

commonly used, and come from four very different context§Sults, we provide them at [2]. _
(see Section IIl): this reduces the risk of results specific t Ve recall that we only use these data-setexanplesiere;

one case. In each of these contexts, we moreover used seylipgussing the relevance of such graphs and their particula
measurements (of different sizes, conducted at diffeigrag, PrOPerties is out of the scope of this paper. The key point is
and/or with significantly different methods); all the resul that they are representative of what is used in most studies,
were consistent and we present here one typical example 3§ that in most cases they are significantly larger. It means
each case. Notice also that we provide the programs we uagt most known results on these objects are actually derive

here, which makes it possible to conduct the same analysis/67 Samples lying somewhere between the beginning and the
any measurement data-set [2]. end of the measurement in our cases.

Before turning to the description of our data-sets an-Elhe”\'ET data-set.
entering in the core of this contribution, let us emphasize aThis data-set comes from th8kitter project at CAIDA
few key points. [1]. Several machines scattered around the world run
e Though we use real-world data in our study, we do not seék acer out e-like probes to a list of almost 000000 des-
results on these particular examples. It makes no doubt tfiggtions, on an approximately daily basis. They recorcheac
studying them in depth would also be relevant, and that offtute discovered this way, together with the time at whiah th
observations raise interesting issues on each particalse, c Probe was launched (and additional information that we do no
but this is not our concern here. We only consider them asO _ - g | .

; ] ; ; ne may use compression techniques to reduce central memoiyerequ
typlcal large scale measurements which we use to IIIl'e;trarlr'ients, see for instance [11], [12], or streaming algorithmivinake central
our approach. memory storage unnecessary, see for instance [31], [45]hisuistout of the
o Likewise, we will not discuss the measurement proceduré&gpe of this paper.

; ; . The given complexities will always be the ones in the worstecdle
the,ms.elves’ which may vary and may be |mproyed, the kﬁgtation@(f(n,m)) meaning that it is bounded by(n,m) and that this
point is that these measurements are representative oh#® Gyound is tight; instead)(f(n, m)) means that the bound may be weak. In
used in current research. In particular, we follow the étads our casesin > n, therefore we will follow the classical convention assuming
convention consisting in ignoring the bias induced by tha fatatm is in (). .
hat th | ¢ K d | duri To save computation time, we considered only the valuesnoin
that the complex ne Wor un .er concern ma_y evo V_e l_"“ I*J(V), i=1,---,100} (where N denotes the number of nodes at the end
the measurement. This is an important and interesting issuihe full measurement) in all the paper, which gives plot$ii0 points.
but it is out of the scope of this paper. SFollowing the classical conventions in complex network Esad we

. removed multiple links (by considering only thist time each link is
e It must also be clear that handling such graphs, togethér W!fscovered), and we removed loops (by considering that dsoa a loop

their evolution, is an algorithmic challenge. It does notyon (v, v) is equivalent to discovering only the nodg



need here). They make this data freely available for acaderekchanges, among which the capture of the queries processed
research. by a server in a semi-centralized system.
Such measurements are often used to construct maps of thé/e used here data obtained this way: it contains all the
internet at IP, router or AS levels. The IP maps are nothimeries processed by a larggbonkey server running the
but the set of all IP addresses viewed during the measuremdémntgdunumsoftware [3]. The trace begins from a reboot of
with a link between any two of them if they are neighbors onthe server, on the 8-th of may, 2004, and lasts until the
collected path. Obtaining router or AS maps from such datalf-th, leading to more thad7 hours of capture with a
a challenge in itself, and subject to some error, see foaimgt time precision ofl second. During this period, the server
[19]. Here we will simply consider the IP level. processed215 135419 user commands (logins, logouts and
We downloaded all the data collected ISkitter from search queries). Here, we kept the search queries, of the
january 2005 to may 2006. During this peri@d,machines ran following form: 7" Q F S; Sy ... S,, whereT is the time
probes with no interruption (other experienced interupti at which this query was treateq), is the peer which sent this
thus we did not include them), leading 616234615 query, F' is the queried file, and;, Ss, ..., S, is a list of
traceroute-like records, and approximat@§0 gigabytes of possible providers for this file (they declared to the sethiat
compressed data. We assumed that the links correspondinghiy have it) sent t@) by the server (so thap may contact
a given route were seen at the time (in seconds) the problingm directly to get the file). The trace contaiis2 086 691

of this route was started. such queries.
The graph finally obtained contairis719037 nodes and We constructed theexchange graphobtained from this
11095 298 links. data by considering that, for each query, at tifiiethe links
between® and.S; appear for each This graph captures some
The wes data-set. information on exchanges between peers, which is commonly

Web graphs,i.e. sets of web pages identified by theiused as a reasonable image of actual exchanges, see for
URL and hyper-links between them, are often used as typidastance [29], [39]. The final exchange graph we obtained has
examples of complex networks. Indeed, it is quite easy to ¢ef92 297 nodes and 42038 401 links.
large such graphs using @awl: from a set of initial pages
(possibly just one), one follows its links and iterates tims The IP data-set.

a breadth-first manner. Collecting huge such graphs howeveSince a few years, it has appeared clearer and clearer that
is much more difficult, since several reasons like limitasio Measuring the way computer networks (and their users) leehav
in computing capabilities and crawling policies lead to gnarin funning environments is essential. This is particulariye
technical constraints. for the internet, where very little is known on large-scale

Here we used a data-set provided by one of the curréfienomena like end-to-end traffic or anomalies (congestion
leading projects on web crawling and management, namé@lures, at'_[acks, etc). !n this spirit, several projectsasure
WebGraph[11], [12], [5]. Their crawler is one of the most @nd study internet traffic, see for instance [36], [37], [4].
efficient currently running, and their data-sets on web lggap Here we obtained from thiletroSecproject [4] the follow-
are the largest available ones. They provided us with a witlg kind of traces. They record the headers of all IP packets
graph of pages in theuk domain containing9 459 925 nodes managed by some routers during the capture period of time.
(web pages) and)21345078 directed links (not including The trace we use here consists in a capture done on the router
loops). Moreover, they provided us with the time at whicht the interface between a large laboratory [34] and thedrits
each page was visited (each was visited only once), thusifernet, between March 7-th, 08:10 am, and March 15-th,
which each node and its outgoing links were discovered. TH806, 02:22 pm, leading to a trace of a little more than 8 days
crawl has been ran from the 11-th of July, 2005, at 00:51, and 709 270 078 recorded IP headers. The trace contains the
the 30-th at 23:24, leading to almost 20 days of measuremédhfl® at which the packet was managed by the router, with a

The time precision id minute. precision of10~° second.

From this data, we obtained a final graph with459 925 From this trace, we extracted for each IP header the sender
nodes and783027125 undirected link§ with the time (in and target of the packet, together with the time at which this
minutes) at which they were discovered. packet was routed. We thus obtained the graph in which nodes

are IP addresses and each link represents the fact that the
The P2p data-set. corresponding IP addresses exchanged (at least) one packet

Several recent studies use traces of running peer-to-peer uch graphs are used (often implicitely) to study the priogeer
exchange systems to give evidence of some of their properti@f €xchanges, to seek attack traces, etc. See for instafte [3
and then design efficient protocols, see for instance [3@],[ The final graph used here hag250 498 nodes and 9 394 216
[29]. They often focus on user behaviors or data propertiddks.
and the complex network approach has proved to be relevant
in this context. Collecting such data however is partidylar
challenging because of the distributed and dynamic natlire o

these systems. Several approaches exist to obtain datasm th In this section, we present our results on the data-sets
described above. Our aim is to span the main basic properties

SWe consider herendirectedgraphs, see the introduction of Section IV. classically observed on real-world complex networks. Fathe

IV. ANALYSIS



set of properties we recall the appropriate definitions, witis not possible to collect complete data on these netwiorks
discuss their computation and we analyze their evolutidh wireasonable time and space, at least using such measurements
the size of the sample in each of our four cases. The key poinfThis implies that the observed properties are those of the
is that we compare these behaviors to the classical assamaptisamples, and may be different from the ones of the whole
in the field. network even at the end of the measurement. To this regard,
In all the definitions in this section, we suppose that a gra@tm important issue of this contribution is to determine \ubet
G = (V, E) is given, and we denote by = |V| its number of this is the case or not, and more precisely, if used sampées ar
nodes, bym = |E| its number of links, and bW (v) = {u € representative of what one would obtain with larger samples
V, (v,u) € E} the set of neighbors, or neighborhood, of noder not.
v. We consider here undirected graphs (we make no distinctionAnother important observation is that, in all cases, the
between(u, v) and (v, u)) since most classical properties ar@umber of linksm grows significantly faster than the number
defined on such graphs only. Moreover, recall that our grapbsnodesn. We will deepen this in Section IV-B.
have no loop and no multiple links, see Section IlI. Finally, notice that in the case oNET the measurement
In order to give precise space and time complexities, viscovers a huge number of nodes and links (roughly half
need to make explicit how we will store our graphs in centrdéihe nodes discovered at the end of the measurement) very
memory. We will use the sorted adjacency arrays encodirgpickly. This is due to the measurement method (based on
for eachv € V we storeN (v) in a sorted array, together witht r acer out e-like probes) and should not be considered as
its size| N (v)|, and access to these informations is granted #nsurprising fact (it corresponds to the first probe from each
©(1) time and space. This encoding ensures that the grapts@irce to each destination). This will have an influence on
stored in spacé®(m) and that the presence of any link carthe plots in the rest of the paper: the first half of each plot
be tested i (log(n)) time and©(1) space. will correspond to a very short measurement time. One may
notice that many studies rely on measurement that do only one
probe per destination, thus leading to samples which may be

A. Basic facts. compared to the ones in the first halves of our plots. However,
as already explained, discussing this is out of the scopki®f t
Size evolution during time. contribution.

As already discussed, in all the paper the properties W nnectivity.
consider will be observed as functions of the sample size, . .

" . . . 'A connected component of a graph is a maximal (no node
which is the classical parameter in complex network studies

However, it would also be relevant to discuss the evolutibn 62" be added) set of nodes such that a path exists between any

. S o ; pair of nodes in this set. The connected components and their
these properties during tinfe The plots in Figure 1 give the © . : )
. sizes are computed using a graph traversal (like a breadth-fi
relation between the two.

search) in©(n) space and(m) time.
126407 ‘ ‘ —— 160408 — In most real-world complex networks, it has been observed
ol u 1 el N | that there is a huge connected component, often cajieat
S0t ] 1 component together with a number of small components
containing no more than a few percents of the nodes, often
much less, if any.
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cases does the measurement reach a state where it discovers— s o o ww 0 P Ry Y —v— "

no or few new nodes and links. Instead, the size of the . _ _

obtained sample is still growing significantly by the endiu t Fig. 2. Fracthn of n'odes in the largest connected comporeat fanction
) of the sample size, with an inset zoom on the last three ggasfezach plot.

measurement. This means that, even for huge measuremep$ ieft to right and top to bottomnET, P2, WEB and P graphs.

like the ones we consider, the final result probably is famfro

a complete view of the network under concern. In other words, . .
In the four cases studied here, these observations are con-

“This would reflect the evolution of the properties during theasurement, firmed, and thiS. iS. ver_y_ Staple independently of the size of
not the dynamics of the complex network under concern as in [20]. the sample. This is visible in Figure 2 where we plot the
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B. Average degree and density.
.. . Fig. 5. Density as a function of the sample size, together et zooms
The degreed®(v) of a nodev is its number of links, or, of the rightmost halves of the plots. From left to right and topbottom:

equivalently, its number of neighborg?(v) = |N(v)|. The INET, P2P, wEB andiP graphs.

average degreel® of a graph is the average over all its

nodes:d® = L 3" d°(v). The density is the number of links

in the graph divided by the total number of possible linkgo to zero. This has a strong meaning: in these cases, one

§= 'n?n%l) The density indicates up to what extent the graptannot consider the value observed for the average degree

is fully connected (all the links exist). Equivalently, it/gs the on any sample as significant. Indeed, taking a smaller or

probability that two randomly chosen nodes are linked in ttfe larger sample would lead to a different value. Since the

graph. There is a trivial relation between the average @egmeasurements we use here are already huge, this even means

and the densityd® = §- (n — 1). Both the average degree andhat there is little chance that the observed value will heac

the density are computed i@ (n) time and©(1) space. steady state within reasonable time using such measurement
The average degree of complex networks is supposed to\We Wwill discuss this further in Section V.

small, and independent of the sample size, as soon as th

sample is large enough. This implies that the densitis

supposed to go to zero when the sample grows, sinee%.

&oing further, one may observe that in some cases the
number of linksm grows faster than the number of nodes
n (the average degree grows), and evemasthe density is

It appears in Figures 4 and 5 that the average degreesiable) in some parts of the plots. In order to deepen this, we
indeed very small compared to its maximal possible valuptesent the plots of: as a function ofn in Figure 6, in log-
and that the density is close to zero, as expected. log scales: straight lines indicate that evolves as a power

In the cases ofvEB and IP, the measurement reaches af n, the exponent being the slope of the line.
regime in which the average degree is rather stable (aroundSuch plots have been studied in the context of dynamic
40 and 17, respectively), and equivalently the density goes tgraphs [40]. In this paper, the authors observe thaseems
0. This means that there is little chance that this value wilb evolve as a power af, and that the average degree grows
evolve if the sample grows any further, and that the observedth time, which was also observed in [21]. In our contexg th
value would be the same independently of the sample size f@havior ofm as a function of: is quite different: the plots in
long as it is not too small). In this sense, the observed val&gure 6 are far from straight lines in most cases. This means
may be trusted, and at least it is not representative of amdy othat exploring more precisely the relations betweerand n
particular sample. We will discuss this further in Section V needs significantly more work, which is out of the scope of

In the two the other casesNET and p2pP, the observed this paper. The key point here is that, in some casegrows
average degree is far from constant, and the density does faster thann, and that the classical algorithmic assumption
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Fig. 6.  Number of links as a function of the number of nodes inltmy compute t?ez_th approximation of the average dlstgnce as
scales, together with the plots gf= = andy = 2 (with an appropriate @i = %Zj:l d(vj). The loop ends at the first > iy,
shift). From left to right and top to bottomnET, P2P, WEB andip graphs. such that the variations in the estimations have been less th
e during the lastin;, steps,i.e. |dj;+1 — d;| < ¢ for all
_ 4,1 — imin < j < i. The variables,,;, ande are parameters
thatm € ©(n) is not always true. used to ensure that at least;, iterations are processed, and
Finally, the properties observed in this section are inghahat the variation during théy;, last iterations is no more
contradiction with the classical assumptions of the field f¢hane. In all the computations below, we toak, = 10 and
two of our four real-world casesNeT and P2pP). This means € = 0-1.
that, in these cases, one cannot assume that the average degrsych approaches are much less relevant for notions like the
observed with such a measurement is representative of #1e giymeter, which is a worst case notion: by computing the tors
of the actual network: taklng a Iarger or smaller Sampleseaease on a samp|e, one may miss a Significanﬂy worse case.
to Significantly different estimations. In the two other ess |nstead, we propose Simp|e and efficient a|gorithms to find
(wes and1P), instead, the measurement seems to reach a stateer and upper bounds for the diameter.
where the observed values are significant. First notice that the diameter of a graph is at least the
height of any BFS tree of this graph. Going further, it is
. . shown in [18], [17] that the following algorithm finds excatit
C. Average distance and diameter. approximations of the diameter of graphs in some specific
We denote byd(u,v) the distance between and v, i.e. cases: given a randomly chosen nodeone first finds the
the number of links on a shortest path between them. Wede « which is the further fromv using a BFS, and then
denote byd(u) = £+ > d(u,v) the average distance from processes a new BFS from then the lower bound obtained
to all nodes, and byl = 1 " d(u) = ;5 3", , d(u,v) the from u is at least as good as the one obtained frgrand is
average distance in the considered graph. We also denotevlly close to the diameter for some graph classes.
D = max, , d(u,v) the diameter of the graphg. the largest  Now, notice that the diameter of a graph cannot be larger
distance. than the diameter of any of its (connected) subgraphs, in
Notice that the definitions above make sense only for coparticular of its BFS trees. Therefore the diameter is bednd
nected graphs. In practice, one generally restricts thepaten by the largest distance in any of its BFS trees, which can be
tions to the largest connected component, which is reag®nasomputed inB(n) time and space, once the BFS tree is given.
since the vast majority of nodes are in this component (see then obtains an upper bound for the diameter in the graph.
Section IV-A). We will follow this convention here; theres ~ We finally iterate the following to find accurate bounds for
in the rest of this subsection, the graph is supposed to #@ diameter. Randomly choose a node and use it to find a
connectedi(e. it has only one connected component) and thewer bound using the algorithm described above; then @oos
computations are made only on the giant component of oaimode in decreasing order of degrees and use it to find an
graphs. upper bound as described above. In the latter, nodes arerchos
Computation. @n d‘_e_creasing order of their degrees becau_se high degrm nod
. ) . intuitively lead to BFS trees with smaller diameter. Weater
Computing distances from one node to all the others in ks ot jeastio times, and until the difference between the
undirected unweighted graph can be doneifn) time and two bounds becomes lower th&nin the vast majority of the
©(n) space with a breadth-first search (BFS). One then obtajis,o¢ considered here, theinitial steps are sufficient. Since
all the.distances in the g_raph, needed f_or exact averagedest each step needs ony(m) time andO(n) space, the overall
an(_j q|ameter computations, (n-m) time andO(n) space. algorithm performs very well in our context.
This is space efficient, but not fast enough for our purpose
(see Section Il). Faster algorithms have been proposed [dpual assumptions and results.
[49], [24], but they all have @ (n?) space cost, which is It appeared in various contexts (see for instance [51],,[33]
prohibitive in our context. See [52] for a survey, and [45],7], [16]) that the average distance and the diameter of real
[22] for recent results on the topic. world complex networks is much lower than expected, leading



to the so-calledsmall-world effect: any pair of nodes tendsD. Degree distribution.

to be connected by very short paths. Going further, bothThe gegree distribution of a graph is the proportjgnof
quantities are also supposed to grow slowly with the numbgpges of degree exactly in the graph, for allk. Given the
of nodesn in the graph (like its logarithm or even slower). encoding we use, its computation is@(n) time and space.
o Degree distributions may be homogeneous (all the values
&ihes —— 7 are close to the average, like in Poisson and Gaussian-distri
N . | butions), or heterogeneous (there is a huge variabilitywéen
1 degrees, with several orders of magnitude between them).

I~ ] When a distribution is heterogeneous, it makes sense to try
to measure this heterogeneity rather than the average.\alue
J.Ck:“+05 8.0c“+05 1.20:+06 I.6c:+06 0 lc‘+0‘6 2er06 ‘3e‘+06 4‘e‘+06 Se«‘!—C‘ie 6et06 some cases, this can be done by flttlng the distribution by a
oot d&har == 1 power-law,i.e. a distribution of the formp, ~ k~°. In such

’ | cases, the exponeat may be considered as an indicator of
s i : hOW heterogeneous the distribution iS.

T
avg dist ——
diameter —+—

w0l s | Usual assumptions and results.

Degree distributions of complex networks have been iden-
tified as a key property since they are very different from
Fig. 7. Estimation of the average distance and bounds for idreeter, as \what was thought until recently [23], [33], and since it was
ng;nvcvt;”a%ﬁr;egfsﬁi_e size. From left to right and top to GIOILINET, 00 that they have a crucial impact on phenomena of high

interest like network robustness [8], [32] or diffusion pesses
[46], [25]. They are considered to be highly heterogeneous,

Figure 7 shows several things. First, the obtained bounds fgenerally well fitted by a power-law, and independent of the
the diameter are very tight and give a precise informatioitn size of the graph.
actual value. The heuristics described above thereforeeaye  We first present in Figure 8 the degree distributions obskrve
efficient and provide a good alternative to previous mettindsin our four cases at the end of the measurement procedure.
our context. These plots also indicate that our approxonati These plots confirm that the degrees are very heterogeneous,
of the average distance is consistent: if the randomly ahossith most nodes having a low degre€d%, 39%, 24% and
nodes had a significant impact on our evaluation, then the% have degree lower thah in INET, P2P, WEB and IP
corresponding plots would not be smooth. respectively), but some nodes having a very high degree (up

Concerning the obtained values themselves, they clearty35455, 15115, 1776 858 and 259905 in INET, P2P, WEB
confirm that both the average distance and the diameter arelip). We however note that the2p degree distribution does
very small compared to the size of the graphs. However, themt have a heavy tail, but rather an exponential cutoff. Ad t
evolution is in sharp contrast with the usual assumptions degree distributions are reasonably, but not perfecttedfiby
the case ofiNET and IP: both the average distance and thpower laws on several decades.
diameter are stable or even decréagdth the size of the

0 1e+07 2e+07 3e+07 4e+07 5.0e+05 1.0e+06 1.5e+06  2.0e+06

sample in these cases (with a sharp increase at the end for tﬁsw ‘ ‘ ‘ ‘ ] .
diameter ofiNET). In the case ofvEB, however, the observed oot 1 oot b
behavior fits very well classical assumptions. The situmigo °*'f ] oot
not so clear fonp: the values seem stable, but they may grow,. | ] o
very slowly. le-o6 | W 1e-06 |
These surprising observations may have a simple expland-_""u ""w i o R TR TR TIQL ‘

tion. Indeed, the usual assumptions concerning average dis+
tance and diameter are strongly supported by the fact tiat th |
average distance and diameter of various random graphd (use:
to model complex networks) grow with their size. However;” | 1 o)
in these models, the average degi#€egenerally is supposed o} ; P 1e-06
to be a constant independent of the size. If it is nolt, then tH& 1 10 o 1000 10000 100000 1es06 o el les o3 lertd  1ex0s
average dISta,'nce in these graphs typlcglly grow og CZ)) Fig. 8. Degree distributions of the final samples. From leftight and top
[13], [44]. This means that, iti® grows withn as observed o hottom:INET, P2P, WEB and P graphs.
in Section IV-B, it is not surprising that the average disgan
and the diameter are stable or decrease. Likewise, in thee casBut recall that our aim is to study how the degree distri-
of Wee where the average degree is constant, the averdggion evolveswhen the size of the sample grows. In order
distance and the diameter should increase slowly, whichtés do this, we will first plot cumulative distributions.€.
in accordance with our observations. for all k the proportiong, = -, p; of nodes of degree
at leastk), which are much easier to compare empirically
8Similar behaviors were observed in [40] in the context of dgitagraphs, than actual distributions. In Figure 9 we show the cumutativ
leading to the claim that these graphs hateinking diameters distributions in our four cases, with three different saergizes

le-04 |

+ 4




each. These plots show that the fact that the degrees arg highe observe in thaves and 1P cases, confirming the fact that
heterogeneous does not depend on the sample size: thig is the degree distribution is very stable in these cases (Eigur

in all cases. However, the K-S test has a totally different behavior in the
1 1 other cases: it shows that the degree distribution contisiyo

ol N L b S %=1 varies during the measurement. This means that its obgavat
oot b ] oo b I 1 on a particular sample cannot be considered as representati
oo g 1 oo g 1 in these cases. We will discuss this further in Section V.
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Fig. 9. Cumulative degree distributions for different samgifees % and% oas I ] OU_Z R
of the total, and the total itself). From left to right and twpbottom:INET, | . i 015k “ﬁ#
p2P, WEB andIP graphs. sl s | o ¢
e bﬁ:k ‘ ‘ R 0.05 ‘

0 L !
0 1e+07 2e+07 3e+07 4e+07 5.0e405  1.0e+06  1.5e+06  2.0e+06

One may however observe that foweT and 1P the distri- Fio. 10, Evolution of the d distribut ding (S test with
. . s 9. . volution O e degree aistrioution according est wi
butions significantly change as the samples grow. Inieer the final one, as a function of the sample size. From left totrégid top to
case one may even be tempted to say thastbpe and thus bottom:ineT, P2P, wEB andiP graphs.
the exponent of the power-law fit, evolves. We will however
avoid such conclusions here: the difference is not sigmifica

enough to be observed this way. Going further, notice that, in several cases, the evolubibn

the K-S test is strongly related to the one of the averagesgegr

In the case ofwEB, only the maximal degree significantly Fi 4 and 10° the plot | ¢ trical f
changes. Notice that, in this case, the average degreeghlyou see Fgures 4 and 11, the plols are aimost symmetrical for
NET andweB, and in the two other cases there also seems to

constant, meaning that this change in the maximal degree L?{ t lation betw the © tatistics. H th
little impact on the average. This is due to the fact that € a strong refation between the two stalisics. Howevere

concerns only very few nodes. In the caseifthe changes exist cases where their behaviors are very different, witiak

are mostly between the valu#s and200 of the degree: below be observed here for instance for small sizes ofitgamples.

and above this interval, the distribution is very stablej aven ;ths c'onf||rmti that the KC;S test cagttuhres fothetrhlnfqr.rrj;tl.(t)n
there the global shape changes only a little. an simply the average degree, and therelore the Simesri

observed here are nontrivial: here, the evolution of theekeg

At this point, it is important to notice that the fact thadistributions is well captured by the evolution of the agera
the degree distributions evolve (foNET and P2P) is not degree itself, as long as the sample is large enough. In other
surprising, since the average degree itself evolves, see Sgords, when the average degree does not change, the KS-test
tion IV-B. In order to deepen this, we need a way to quantiffand thus the main properties of the degree distributios) al
the difference between degree distributions, so that we miaystable, in our cases.
observe their evolution more precisely.

The most efficient way to do so probably is to use the Let us finally notice that methods exist to automatically
classical Kolmogorov-Smirnof (K-S) statistical test, osisn- compute the best power-law fit of a distribution according to
ilar one. Given two distributiong;, and pj which we want various criteria. The simplest one probably is a leastssgua
to compare, it consists in computing the maximal differendiear fit of the log-log plot, but it can be improved in severa
maxy, (|qx — g, |) between their respective cumulative distribuways and more subtle methods exist, see for instance [27],
tions ¢ andgj,. This test is known to be especially well suited43]. Such automatic approaches are appealing in our contex
to compare heterogeneous distributions, when one wantsstace they would allow us to plot the evolution of the expdnen
keep the comparison simple. of the best fit as a function of the sample size.

We display in Figure 10 the values obtained by the K-S testWe tried several such methods, but it appears that our
when one compares the degree distribution at each step of dlegree distributions are too far from perfect power-lawgive
measurement to the final one. This makes it possible to s@gnificant results. We tried both with the classical disitions
how the degree distribution evolves towards the final one asd the cumulative ones, and both with the entire distrimsti
the sample size grows. and with parts of them more likely to be well fitted by power-

The K-S test may first have a phase where it varies much batvs. The results remain poor, and vary depending on the used
finally reach a phase where its value oscillates close(tiote approach (including the fitting method). We therefore coesi
that it cannot be negative), indicating that the measurémehem as not significant, and we do not present them here.
reached a stable view of the degree distribution. This istwha
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Despite having a small density, a graph may have a hiéﬁ

local density: if two nodes are close to each other in the, : : : oo
graph, they are linked together with a much higher probbilig.|. W §§§,§
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than two randomly chosen nodes. There is a variety of way$

to capture this, the most widely used being to compute ther i 05
clustering coefficient and/or the transitivity ratio, whieve {5 mws el

H . H . 0.550 . clustering ~eHoze
will study in tr_us sect|o_n._ o500 oum0s 4,

The clustering coefficient of a node (of degree at least oz v — — 200 o
2) is the probability for any two neighbors @fto be linked 5 i, 66 eI | Vooe b £ P

. 2:|Enl 0os0 (Ui T 2 et — 50007 F . transitivity Se+062¢

together' C(?U) = d°(1))'(d°<(1)>)—1) WhereEN(’U) = Em(N(U) X 00005 1607 26407 3e407  de+07 006400 500105 100406 150406 200406

N (v)) is the set of links between neighborswfNotice that it
is nothing but the density of the neighborhoodvpfind in this Fig. 11. The clustering coefficient and transitivity rati® a function of the
. . . .. sample size. From left to right and top to bottorReT, P2P, WEB and IP
sense it captures the local density. The clustering coeffiaf graphs.
the graph itself is the average of this value for all the nddés
. 1 p
degree at least): CC= rr=y—srysay 2avev, do(v)>2 CC(V)- o _ .

One may also define the transitivity ratio of the graph avolve quite differently (they even have opposite slopethén
follows: tr = % whereNx denotes the number of triangles WEB case). Finally, there is no general behavior, except tleat th
i.e. sets of three nodes with three links, in the graph ahd observed value is unstable in most cases. This indicatés tha
denotes the number of connected triples,sets of three nodes it is unlikely that one may infer the clustering coefficient o
with two links, in the graph. the transitivity ratio of the underlying complex networlorfn

Computing the clustering coefficient and transitivity sas  such measurements, and that the values obtained on a given
strongly related to counting and/or listing all the triaeg)in a sample are not representative (except the transitivity rait
graph. These problems have been well studied, see [38] foP2p, in our cases). We will discuss this further in Section V.

§urvey.2The fgste_st knovv_n_a_llgor_ithms have a space complexit At this point, it is important to notice that for the statcsti
in ©(n®), which IS prOh'b't'Ve.'n our context. Instead, ON&ve observed previously, each one of our graphs conformed to
gengrally uses a_S|mpIe algonthm that computeg the num%?trher all or none of the usual assumptions. This is not the
(Oaf tlrlangles t(_?_r\]'yh'.Cht eac? I'nllf belongs (- ﬂg) tt|me andb ase anymore when we take the clustering coefficient and the
I( )_frp])ace. . Its Istthi)o S S‘Nt.‘” our zlgpose, u moret su Fansitivity ratio into account. Typically, despite thecfahat it
agg? n}[s ter)](é% WIth® (m ) 'mc? th in) stpr)lace Coﬁ Ssm conforms to all other classical assumptions on the pragserti
af ﬂ'] lon 1o (mg spat(;]e nze et 0 s]?re fe g_rapb. ttomﬁe studied until nowwEeB does not have stable values for
ot them moreover have the advantage of pertorming DEUEr fhso nevy statistics. Conversely, the transitivity rafi@2r is
graphs V\."th heterogeneous Qegree distributions like thes OrQ/ery stable whereas its observed properties did not matedl us
wle c_ct);15|der he:e, see Stefct|on V-D. Wf ;;e Zsre Ssglch umptions until now. This shows that, while the propertie
algorithm, namelycompact-forward presented in [47], [38]. studied in previous sections seem to be strongly relatedeo t

Usual assumptions and results. average degree, the ones observed here are not.
Concerning clustering coefficients, there are severahagsu ‘ ‘ ‘ ‘ B

tions commonly accepted as valid. The key ones are the faet; P 14000 gw

that the clustering coefficient and the transitivity ratice a . | jfw LI

significantly (several orders of magnitude) larger than thee; B ] 8000 |

density, and that they are independent of the sample siZg, |

as long as it is large enough. Moreover, the two notions are ] 200 ¢

genera”y thought as equiva|ent_ 1_833)6 -l.Oe‘+‘05 8.0e‘1‘-05 120006 Leos0t 3000&]0 13-‘*—06‘ 20106 ‘Se‘+06 4e‘-‘+06 551‘-0‘6 6er06
Let us first notice that, because of its definition (see Sec="| - ] 250000 | ———————__

tion 11l) the 1P graph can contain only very few triangles: mosts: | » ] 200000 - ]

of its links are between nodes inside the laboratory and 1008, | g"f ] 150000 £

in the outside internet, which prevents triangle formatior{™| ' ] '°°°°°’W$

Observing the clustering coefficient and the transitiviagia 20 N ] sory

0 L L L L
5.0e405 1.0e+06 1.5e+06 2.0e+06

on such graphs makes little sense. Therefore, we will show s o o wo o
the plots but we will n_Ot dI_SCUSS them for this case. Fig. 12. Maximal degree as a function of the sample size. Fréintoeight

It appears clearly in Figure 11 that the values of botihd top to bottomiNET, P2P, WEB and P graphs.
statistics are indeed much larger than the density in our
examples (except forp, as explained above). But it also One may therefore investigate other explanations. We al-
appears that their value is quite unstable (except in part feady observed in Section IV-D that, in the casen®#B, the
p2p); for instance the transitivity ratio in theNeT graph maximal degree is not directly related to the average degree
experiences a variation of approximatdlyimes its own value. it varies significantly though the global distribution arftet
Moreover, the clustering coefficient and the transitiviitio average degree are stable. Going further, we plot the mé&xima
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(:,l \ ] nr Wﬁtﬁ 1 large, especially for the2p and 1P cases. This is a striking

oo | f,f" ol Fa »" | observation indicating that the ratio between density and
0ots [, f ] ol #*‘“’M 1 clustering coefficient may be a much more relevant stadilstic
001 g :f 1 oI Nf 1 property than the clustering coefficient in our context: duid

oS, ra ] jwﬁ 1 make sense to seek accurate estimations of this ratio using
P T e TR (g A e e s e wwe  practical measurements, rather than estimations of the two
3sr O5on [ ‘ 1 1.26-06 F9 E i E i isti i .

| §%§% N : e ézag W 7 involved statistics on their own

ﬁﬁ‘# e e e PO - | —— 3 V. CONCLUSION AND DISCUSSION

" *‘*wf ] wor | 1 In this paper, we propose the first practical method to rig-
0sf . 1 L | orously evaluate the relevance of properties observedrge la
KON i T P e eSS e scale complex network measurements. It consists in stgdyin

Fig. 13. Number of triangles divided by the square of the maxidegree, how these properties evolve when the sample grows during the
as a function of the sample size. From left to right and top tioobe: INET, Measurement. Complementary to other contributions to this
P2p, weB and P graphs. field [35], [10], [6], [28], [20], this method deals directiyith
real-world data, which has the key advantage of leading to
) . practical results.
degreedma, Of our samples as a function of their size in e applied this methodology to very large measurements of
Figure 12. It seems that it is correlated to the variations gf,,, gifferent kinds of complex networks. These data-sets a
the transitivity ratio. This is due to the fact that the maaim significantly larger than the ones commonly used, and they ar
degree node plays a key role in the number gf connecteddriplgpresentative of the wide variety of complex networks igtid
in the graph: it induces approximatel..~ such triples. iy computer science. The classical approach for studying
Therefore, any strong increase of the maximal degree isduggese networks is to collect as much data as possible (which
a decrease of the transitivity ratio, and when the maxim@l |imited by computing capabilities and measurement time,

degree remains stable the transitivity ratio tends to grow g least), and then to assume that the obtained sample is
to stay stabl@. This is confirmed by the plot of the ”“mberrepresentative of the whole.

of triangles divided by the square of the maximal degree, as

a function of the sample size, Figure 13, which has a shapeo”r key result is that our methodolody makes it possible to
similar to the transitivity plots. rigorously identify cases where this approach is mislegdin

whereas in other cases it makes sense and may lead to accurate

o ‘ R T 20— —————————— _ gstimations.

ol d | oo | ﬁm ]

35000 I o B 16000 I B .

30000 | B ] 100 | ] In the case ofNET, for instance, the average degree of the
00 1 o} ] sample grows with its size (once it is large enough), which
500 | 4 ] o0 L+ 1 shows clearly that the average degree observed on a particul
ol ] -l 1 sample is certainly not the one of the whole graph. In the case
o000 000001 20s06 0o io o s 20 3o ses 0 s Of WEB, 0N the contrary, the average degree reaches a stable

450000 -
400000 -
350000
300000 [
250000

at 1 value, indicating that collecting more data probably womtd
] change it. Despite this, the transitivity ratio of this dnais
still unstable by the end of the measurement, which shows

3N

i
o000 | st 1 that a given measurement may reach a stable regime for some
oo [ 1 s sl of jts basic properties while others are still unstable.sTisi

0 o7 e seor  der? 0 0000 les o6 20406 confirmed bypP2pP, which has a stable transitivity ratio but

. . - y . . unstable average degree. These last observations alsdfstow
Fig. 14. Clustering coefficient divided by the density, auaction of the h . | hi hyv b ies’ th il
sample size. From left to right and top to bottomeT, P2p, wes andip  (NEr€ IS NO clear hierarchy between properties: the styaloii
graphs. unstability of some properties are independent of eachr.othe

Some observations we made on these examples are in
Concerning the clustering coefficient, which captures traharp contrast with usual assumptions, thus proving tleeteth
local density, the important points in usual assumptions agssumptions are erroneous in these cases. Other obsesvatio
that it is several orders of magnitude larger than the (dJobare in accordance with them, which provides for the first
density and that it is independent of the sample size. Sinib@e a rigorous empirical argument for the relevance ofehes
the second part of this claim is false, and since the uswsumptions in some cases.
assumptions on density are also false, one may wonder howiMore generally, the proposed method makes it possible to
the ratio between the two values evolves. Figure 14 shows thigstinguish between the two following cases:
this ratio tends to be constant when the sample becomes very either the property of interest does not reach a stable
regime during the measurement, and then this property
9As a consequence, one may consider that the transitivitp iatinot observed on a given sample certainly is erroneous;
relevant in graphs where a few nodes have a huge degree: tioeks . ’
« or the property does reach a stable regime, and then we

dominate the behavior of this statistics. This has already liiscussed, see D
for instance [48], but this is out of the scope of this conttion. may conclude that it will probably not evolve anymore
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and that it is indeed a property of the whole networgoverned by the ones of the maximal degree and density. The
(though it is possibly biased, see below). more complex statistics are not totally controlled by sienpl

I ones, however, and investigating the difference betweein th
The fact that, even if it is stable, the observed property Mhavior and what can be expected would certainly yield

be biased is worth deepening. Indeed, it may actually evolugishtening insights. In this spirit, we have shown tha th

again when the sample grows further (like the average degl’fﬁﬁo between the clustering coefficient and the densitynsee

N our INET meas_urement for instance, see Figure _4)' Thﬁ nificantly more stable than these two statistics on thir.

makes tr?edclollectmn of very large data-sets a key issue 10frqq0 ghservations have to be deepened, but they indicate

ou_:_:.]et do ology. irel | h bl h . that the set of relevant statistics for the study of complex
s does not entirely solve the problem, however: thg,, s might be different from what is usually thought:

property may remain stable until th_e sample spans a'"_‘OSt Ime statistics may be redundant, and other statistics may b
the network under concern, but still be significantly biase o

finite-size effects may lead to variations in the observati
at the end of the measurement (like at its beginning). Mor
over, the fact that the underlying network evolves during th

measurement should not be neglected anymore. Going e\/Aec:nknowIedgments.We thank all the colleagues who provided

further, one may notice that some measurement techniq%
are unable to provide a complete view of the network und s
concern, however how long the measurement is continued (
instance, some links may be invisible from the sources u
in atracer out e-based measurement).

Estimating such biases currently is a challenging area g
research in which some significant contributions have be
made [35], [10], [6], [28], [20], but most remains to be done,
The ultimate goal in this direction is to be able to accu;ateg
evaluate the actual properties of a complex network from

the observation of a (biased) measurement. In the absence

of such results, researchers have no choice but to rely on
the assumption that the properties they observe do notrsuffg]
from such a bias; our method makes it possible to distinguisil

re relevant than classical ones (in particular, conogrni
Qheir accurate evaluation). This raises promising diosgifor
flirther investigation, in both the analysis and modelingaar

2ta to us, in particular Paolo Boldi from WebGraph [5], and

people at MetroSec [4], Skitter [1] and Lugdunum [3].

é such work would be possible without their help. We also
Sfank Nicolas Larrieu for great help in managing the datd, an
Frederic Aidouni and Fabien Viger for helpful comments and
references.
Ris work was partly funded by the MetroSec (Metrology
f the Internet for Security) [4], and the AGRI (Analyse des
rands Rseaux d’Interactions) projects.
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