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Abstract—Complex networks, modeled as large graphs, re-
ceived much attention during these last years. However, data on
such networks is only available through intricate measurement
procedures. Until recently, most studies assumed that these proce-
dures eventually lead to samples large enough to be representative
of the whole, at least concerning some key properties. This has
crucial impact on network modeling and simulation, which rely
on these properties.

Recent contributions proved that this approach may be mis-
leading, but no solution has been proposed. We provide here
the first practical way to distinguish between cases where it is
indeed misleading, and cases where the observed properties may
be trusted. It consists in studying how the properties of interest
evolve when the sample grows, and in particular whether they
reach a steady state or not.

In order to illustrate this method and to demonstrate its rele-
vance, we apply it to data-sets on complex network measurements
that are representative of the ones commonly used. The obtained
results show that the method fulfills its goals very well. We
moreover identify some properties which seem easier to evaluate
in practice, thus opening interesting perspectives.

I. CONTEXT.

Complex networks of many kinds, modeled as large graphs,
appear in various contexts. In computer science, let us cite
internet maps (at IP, router or AS levels, see for instance [23],
[26], [19], [1]), web graphs (hyperlinks between pages, seefor
instance [33], [16], [11], [12], [5]), or data exchanges (inpeer-
to-peer systems, using e-mail, etc, see for instance [30], [50],
[39], [29]). One may also cite many examples among social,
biological or linguistic networks, like co-authoring networks,
protein interactions, or co-occurrence graphs for instance.

It appeared recently (at the end of the 90s [51], [23],
[33], [7], [16]) that most real-world complex networks have
nontrivial properties which make them very different from the
models used until then (mainly random, regular, or complete
graphs and ad hoc models). This lead to the definition of
a set of statistics, the values of which are considered as
fundamental properties of the complex network under concern.
This induced in turn a stream of studies aimed at identifying
more such properties, their causes and consequences, and
capturing them into relevant models. They are now used as
key parameters in the study of various phenomena of interest
like robustness [8], [32], spreading of information or viruses
[46], [25], and protocol performance [41], [30], [50], [29]for
instance. They are also the basic parameters of many network
models and simulation systems, like for instanceBRITE [42].

This makes the notion of fundamental properties of complex
networks a key issue for current research in this field. For
recent surveys on typical properties and related issues, see for
instance [15], [14].

However, most real-world complex networks are not directly
available: collecting data about them requires the use of a
measurement procedure. In most cases, this procedure is an
intricate operation that gives apartial and possiblybiased
view. Most contributions in the field then rely on the following
(often implicit) assumption: during the measurement proce-
dure, there is an initial phase in which the collected data may
not be representative of the whole, butwhen the sample grows
one reaches a steady state where the fundamental properties
do not vary anymore.Authors therefore grab a large amount
of data (limited by the cost of the measurement procedure, and
by the ability to manage the obtained data) and then suppose
that the obtained view is representative of the whole, at least
concerning these properties.

Until recently, very little was known on the relevance of
this approach, which remains widely used (because in most
case there is no usable alternative method). This has long been
ignored, until the publication of some pioneering contributions
[35], [10] showing that the bias induced by measurement
procedures is significant, at least in some important cases.It is
now a research topic in itself, with both theoretical, empirical
and experimental studies; see for instance [35], [10], [6],[28],
[20] 1. In this stream of studies, the authors mainly try to
identify the impact of the measurement procedure on the ob-
tained view and to evaluate the induced bias. The central idea,
first introduced in [35], [10], is to take a graphG (generally
obtained from a model or a real-world measurement), simulate
a measurement ofG thus obtaining the viewG′ and compare
G and G′. This gave rise to significant insight on complex
network metrology, but much remains to be done.

II. A PPROACH AND SCOPE.

Our contribution belongs to the current stream of studies
on real-world complex networks, and more precisely on the
measurement of these networks. It addresses the issue of the
estimation of their basic properties, with the aim of providing
a practical solution to this issue. Indeed, until now, authors

1Note however that, because of its importance and because its measure-
ment can be quite easily modeled, the case of internet measurements with
traceroute received most attention.
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studying real-world complex networks had no choice but to
follow the classical assumption that their sample is large
enough to be representative of the whole, even though this
has been proved to be far from obvious [35], [10], [6], [28],
[20]. We will make it possible to evaluate the relevance of this
classical assumption in practical cases.

We notice that the vast majority of real-world complex net-
work studies rely on samples obtained through a measurement
procedure that isinterrupted when the obtained sample is
considered large enoughto be representative of the whole.
Then, we mimic this by processing very large measurements
of real-world complex networks: we study what the observed
properties would be if one had stopped the measurement when
the sample had reached a given size, smaller than the final one.

The main strength of this approach is that it relies onreal
measurements of complex networks, while previous works had
to model the complex network under concern, the measure-
ment process, or both, see for instance [35], [6], [28], [20].
Such a modeling is a challenging task since the measurement
procedure generally is intricate, and since we do not know the
underlying complex network that we actually measure. We
avoid these problems here since we rely on real-world data,
obtained in a way that is representative of what is done in
practice.

This also means that measuring the same complex networks
but in another way, and/or measuring other complex networks,
may lead to different results. This is why we paid high atten-
tion to use measurements that are representative of the ones
commonly used, and come from four very different contexts
(see Section III); this reduces the risk of results specific to
one case. In each of these contexts, we moreover used several
measurements (of different sizes, conducted at different times,
and/or with significantly different methods); all the results
were consistent and we present here one typical example for
each case. Notice also that we provide the programs we used
here, which makes it possible to conduct the same analysis on
any measurement data-set [2].

Before turning to the description of our data-sets and
entering in the core of this contribution, let us emphasize a
few key points.
• Though we use real-world data in our study, we do not seek
results on these particular examples. It makes no doubt that
studying them in depth would also be relevant, and that our
observations raise interesting issues on each particular case,
but this is not our concern here. We only consider them as
typical large-scale measurements which we use to illustrate
our approach.
• Likewise, we will not discuss the measurement procedures
themselves, which may vary and may be improved; the key
point is that these measurements are representative of the ones
used in current research. In particular, we follow the classical
convention consisting in ignoring the bias induced by the fact
that the complex network under concern may evolve during
the measurement. This is an important and interesting issue,
but it is out of the scope of this paper.
• It must also be clear that handling such graphs, together with
their evolution, is an algorithmic challenge. It does not only

force us to use important capacities in central memory and in
processing power: algorithms with a time or space cost more
than linear in the number of nodesn and/or linksm are almost
unusable in this context2. We will therefore carefully choose
the algorithms we use in our computations, and discuss their
complexities all along the paper3.

III. M ETHOD AND DATA-SETS.

To achieve our goal, we need data in the following form:
given a real-world complex network measurement, for each
integer n we need the graph one would obtain if this mea-
surement had been stopped as soon asn nodes had been
discovered. We then compute the properties under concern
for each of these graphs, obtaining plots of their value as a
function of the sample sizen 4.

Our data-sets are derived from raw data on how complex
networks are measured, which we describe below. They come
from some of the largest and highest quality data-sets currently
available, and span quite well the variety of complex networks
usually considered in computer science. From this raw data,
we first extracted, for each node and link, the time at which it
was discovered5. Then we wrote a program that runs through
this stream of node and link arrivals (ordered by the time
at which they are discovered) until the sample reaches the
prescribed sizen, and then computes the desired statistics.

Because these data-sets and the program may be useful for
other purpose, and because they are needed to reproduce our
results, we provide them at [2].

We recall that we only use these data-sets asexampleshere;
discussing the relevance of such graphs and their particular
properties is out of the scope of this paper. The key point is
that they are representative of what is used in most studies,
and that in most cases they are significantly larger. It means
that most known results on these objects are actually derived
from samples lying somewhere between the beginning and the
end of the measurement in our cases.

The INET data-set.

This data-set comes from theSkitter project at CAIDA

[1]. Several machines scattered around the world run
traceroute-like probes to a list of almost1 000 000 des-
tinations, on an approximately daily basis. They record each
route discovered this way, together with the time at which the
probe was launched (and additional information that we do not

2One may use compression techniques to reduce central memory require-
ments, see for instance [11], [12], or streaming algorithms which make central
memory storage unnecessary, see for instance [31], [45], but this is out of the
scope of this paper.

3The given complexities will always be the ones in the worst case, the
notationΘ(f(n, m)) meaning that it is bounded byf(n, m) and that this
bound is tight; instead,O(f(n, m)) means that the bound may be weak. In
our cases,m > n, therefore we will follow the classical convention assuming
that m is in Ω(n).

4To save computation time, we considered only the values ofn in
{ i∗N

100
, i = 1, · · · , 100} (whereN denotes the number of nodes at the end

of the full measurement) in all the paper, which gives plots with 100 points.
5Following the classical conventions in complex network studies, we

removed multiple links (by considering only thefirst time each link is
discovered), and we removed loops (by considering that discovering a loop
(v, v) is equivalent to discovering only the nodev).
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need here). They make this data freely available for academic
research.

Such measurements are often used to construct maps of the
internet at IP, router or AS levels. The IP maps are nothing
but the set of all IP addresses viewed during the measurement,
with a link between any two of them if they are neighbors on a
collected path. Obtaining router or AS maps from such data is
a challenge in itself, and subject to some error, see for instance
[19]. Here we will simply consider the IP level.

We downloaded all the data collected bySkitter from
january 2005 to may 2006. During this period,20 machines ran
probes with no interruption (other experienced interruptions,
thus we did not include them), leading to4 616 234 615
traceroute-like records, and approximately350 gigabytes of
compressed data. We assumed that the links corresponding to
a given route were seen at the time (in seconds) the probing
of this route was started.

The graph finally obtained contains1 719 037 nodes and
11 095 298 links.

The WEB data-set.

Web graphs,i.e. sets of web pages identified by their
URL and hyper-links between them, are often used as typical
examples of complex networks. Indeed, it is quite easy to get
large such graphs using acrawl: from a set of initial pages
(possibly just one), one follows its links and iterates thisin
a breadth-first manner. Collecting huge such graphs however
is much more difficult, since several reasons like limitations
in computing capabilities and crawling policies lead to many
technical constraints.

Here we used a data-set provided by one of the current
leading projects on web crawling and management, namely
WebGraph[11], [12], [5]. Their crawler is one of the most
efficient currently running, and their data-sets on web graphs
are the largest available ones. They provided us with a web
graph of pages in the.uk domain containing39 459 925 nodes
(web pages) and921 345 078 directed links (not including
loops). Moreover, they provided us with the time at which
each page was visited (each was visited only once), thus at
which each node and its outgoing links were discovered. This
crawl has been ran from the 11-th of July, 2005, at 00:51, to
the 30-th at 23:24, leading to almost 20 days of measurement.
The time precision is1 minute.

From this data, we obtained a final graph with39 459 925
nodes and783 027 125 undirected links6 with the time (in
minutes) at which they were discovered.

The P2P data-set.

Several recent studies use traces of running peer-to-peer file
exchange systems to give evidence of some of their properties,
and then design efficient protocols, see for instance [30], [50],
[29]. They often focus on user behaviors or data properties,
and the complex network approach has proved to be relevant
in this context. Collecting such data however is particularly
challenging because of the distributed and dynamic nature of
these systems. Several approaches exist to obtain data on these

6We consider hereundirectedgraphs, see the introduction of Section IV.

exchanges, among which the capture of the queries processed
by a server in a semi-centralized system.

We used here data obtained this way: it contains all the
queries processed by a largeeDonkey server running the
Lugdunumsoftware [3]. The trace begins from a reboot of
the server, on the 8-th of may, 2004, and lasts until the
10-th, leading to more than47 hours of capture with a
time precision of1 second. During this period, the server
processed215 135 419 user commands (logins, logouts and
search queries). Here, we kept the search queries, of the
following form: T Q F S1 S2 . . . Sn, whereT is the time
at which this query was treated,Q is the peer which sent this
query, F is the queried file, andS1, S2, . . ., Sn is a list of
possible providers for this file (they declared to the serverthat
they have it) sent toQ by the server (so thatQ may contact
them directly to get the file). The trace contains212 086 691
such queries.

We constructed theexchange graph, obtained from this
data by considering that, for each query, at timeT , the links
betweenQ andSi appear for eachi. This graph captures some
information on exchanges between peers, which is commonly
used as a reasonable image of actual exchanges, see for
instance [29], [39]. The final exchange graph we obtained has
5 792 297 nodes and142 038 401 links.

The IP data-set.

Since a few years, it has appeared clearer and clearer that
measuring the way computer networks (and their users) behave
in running environments is essential. This is particularlytrue
for the internet, where very little is known on large-scale
phenomena like end-to-end traffic or anomalies (congestions,
failures, attacks, etc). In this spirit, several projects measure
and study internet traffic, see for instance [36], [37], [4].

Here we obtained from theMetroSecproject [4] the follow-
ing kind of traces. They record the headers of all IP packets
managed by some routers during the capture period of time.
The trace we use here consists in a capture done on the router
at the interface between a large laboratory [34] and the outside
internet, between March 7-th, 08:10 am, and March 15-th,
2006, 02:22 pm, leading to a trace of a little more than 8 days
and 709 270 078 recorded IP headers. The trace contains the
time at which the packet was managed by the router, with a
precision of10−6 second.

From this trace, we extracted for each IP header the sender
and target of the packet, together with the time at which this
packet was routed. We thus obtained the graph in which nodes
are IP addresses and each link represents the fact that the
corresponding IP addresses exchanged (at least) one packet.
Such graphs are used (often implicitely) to study the properties
of exchanges, to seek attack traces, etc. See for instance [36].
The final graph used here has2 250 498 nodes and19 394 216
links.

IV. A NALYSIS

In this section, we present our results on the data-sets
described above. Our aim is to span the main basic properties
classically observed on real-world complex networks. For each
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set of properties we recall the appropriate definitions, we
discuss their computation and we analyze their evolution with
the size of the sample in each of our four cases. The key point
is that we compare these behaviors to the classical assumptions
in the field.

In all the definitions in this section, we suppose that a graph
G = (V,E) is given, and we denote byn = |V | its number of
nodes, bym = |E| its number of links, and byN(v) = {u ∈
V, (v, u) ∈ E} the set of neighbors, or neighborhood, of node
v. We consider here undirected graphs (we make no distinction
between(u, v) and (v, u)) since most classical properties are
defined on such graphs only. Moreover, recall that our graphs
have no loop and no multiple links, see Section II.

In order to give precise space and time complexities, we
need to make explicit how we will store our graphs in central
memory. We will use the sorted adjacency arrays encoding:
for eachv ∈ V we storeN(v) in a sorted array, together with
its size|N(v)|, and access to these informations is granted in
Θ(1) time and space. This encoding ensures that the graph is
stored in spaceΘ(m) and that the presence of any link can
be tested inΘ(log(n)) time andΘ(1) space.

A. Basic facts.

Size evolution during time.

As already discussed, in all the paper the properties we
consider will be observed as functions of the sample size,
which is the classical parameter in complex network studies.
However, it would also be relevant to discuss the evolution of
these properties during time7. The plots in Figure 1 give the
relation between the two.

Fig. 1. Evolution of the number of nodes and links during time (in hours).
From left to right and top to bottom:INET, P2P, WEB and IP graphs.

It appears clearly on these plots that in none of the four
cases does the measurement reach a state where it discovers
no or few new nodes and links. Instead, the size of the
obtained sample is still growing significantly by the end of the
measurement. This means that, even for huge measurements
like the ones we consider, the final result probably is far from
a complete view of the network under concern. In other words,

7This would reflect the evolution of the properties during themeasurement,
not the dynamics of the complex network under concern as in [21], [40].

it is not possible to collect complete data on these networksin
reasonable time and space, at least using such measurements.

This implies that the observed properties are those of the
samples, and may be different from the ones of the whole
network even at the end of the measurement. To this regard,
an important issue of this contribution is to determine whether
this is the case or not, and more precisely, if used samples are
representative of what one would obtain with larger samples
or not.

Another important observation is that, in all cases, the
number of linksm grows significantly faster than the number
of nodesn. We will deepen this in Section IV-B.

Finally, notice that in the case ofINET the measurement
discovers a huge number of nodes and links (roughly half
the nodes discovered at the end of the measurement) very
quickly. This is due to the measurement method (based on
traceroute-like probes) and should not be considered as
a surprising fact (it corresponds to the first probe from each
source to each destination). This will have an influence on
the plots in the rest of the paper: the first half of each plot
will correspond to a very short measurement time. One may
notice that many studies rely on measurement that do only one
probe per destination, thus leading to samples which may be
compared to the ones in the first halves of our plots. However,
as already explained, discussing this is out of the scope of this
contribution.

Connectivity.

A connected component of a graph is a maximal (no node
can be added) set of nodes such that a path exists between any
pair of nodes in this set. The connected components and their
sizes are computed using a graph traversal (like a breadth-first
search) inΘ(n) space andΘ(m) time.

In most real-world complex networks, it has been observed
that there is a huge connected component, often calledgiant
component, together with a number of small components
containing no more than a few percents of the nodes, often
much less, if any.

Fig. 2. Fraction of nodes in the largest connected component as a function
of the sample size, with an inset zoom on the last three quarters of each plot.
From left to right and top to bottom:INET, P2P, WEB and IP graphs.

In the four cases studied here, these observations are con-
firmed, and this is very stable independently of the size of
the sample. This is visible in Figure 2 where we plot the
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Fig. 3. Number of connected components as a function of the sample size.
From left to right and top to bottom:INET, P2P, WEB and IP graphs.

proportion of nodes in the giant component: it is very close
to 1 in all the cases, even for quite small samples (the only
noticable thing is that up to7% of the nodes inP2P are not
in the giant component, but it still contains more than92% of
them). On the contrary, the number of connected components
varies depending on the case, as well as its behavior as a
function of the size of the graph, see Figure 3. Since there is
no classical assumption concerning this, and no clear general
behavior, we do not detail these results here.

B. Average degree and density.

The degreedo(v) of a nodev is its number of links, or,
equivalently, its number of neighbors:do(v) = |N(v)|. The
average degreedo of a graph is the average over all its
nodes:do = 1

n

∑
v do(v). The density is the number of links

in the graph divided by the total number of possible links:
δ = 2·m

n·(n−1) . The density indicates up to what extent the graph
is fully connected (all the links exist). Equivalently, it gives the
probability that two randomly chosen nodes are linked in the
graph. There is a trivial relation between the average degree
and the density:do = δ · (n−1). Both the average degree and
the density are computed inΘ(n) time andΘ(1) space.

The average degree of complex networks is supposed to be
small, and independent of the sample size, as soon as the
sample is large enough. This implies that the densityδ is
supposed to go to zero when the sample grows, sinceδ = do

n−1 .

It appears in Figures 4 and 5 that the average degree is
indeed very small compared to its maximal possible value,
and that the density is close to zero, as expected.

In the cases ofWEB and IP, the measurement reaches a
regime in which the average degree is rather stable (around
40 and17, respectively), and equivalently the density goes to
0. This means that there is little chance that this value will
evolve if the sample grows any further, and that the observed
value would be the same independently of the sample size (as
long as it is not too small). In this sense, the observed value
may be trusted, and at least it is not representative of only one
particular sample. We will discuss this further in Section V.

In the two the other cases,INET and P2P, the observed
average degree is far from constant, and the density does not

Fig. 4. Average degree as a function of the sample size. From left to right
and top to bottom:INET, P2P, WEB and IP graphs.

Fig. 5. Density as a function of the sample size, together withinset zooms
of the rightmost halves of the plots. From left to right and topto bottom:
INET, P2P, WEB and IP graphs.

go to zero. This has a strong meaning: in these cases, one
cannot consider the value observed for the average degree
on any sample as significant. Indeed, taking a smaller or
a larger sample would lead to a different value. Since the
measurements we use here are already huge, this even means
that there is little chance that the observed value will reach a
steady state within reasonable time using such measurements.
We will discuss this further in Section V.

Going further, one may observe that in some cases the
number of linksm grows faster than the number of nodes
n (the average degree grows), and even asn2 (the density is
stable) in some parts of the plots. In order to deepen this, we
present the plots ofm as a function ofn in Figure 6, in log-
log scales: straight lines indicate thatm evolves as a power
of n, the exponent being the slope of the line.

Such plots have been studied in the context of dynamic
graphs [40]. In this paper, the authors observe thatm seems
to evolve as a power ofn, and that the average degree grows
with time, which was also observed in [21]. In our context, the
behavior ofm as a function ofn is quite different: the plots in
Figure 6 are far from straight lines in most cases. This means
that exploring more precisely the relations betweenm andn

needs significantly more work, which is out of the scope of
this paper. The key point here is that, in some cases,m grows
faster thann, and that the classical algorithmic assumption
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Fig. 6. Number of links as a function of the number of nodes in log-log
scales, together with the plots ofy = x and y = x2 (with an appropriate
shift). From left to right and top to bottom:INET, P2P, WEB and IP graphs.

that m ∈ Θ(n) is not always true.

Finally, the properties observed in this section are in sharp
contradiction with the classical assumptions of the field for
two of our four real-world cases (INET and P2P). This means
that, in these cases, one cannot assume that the average degree
observed with such a measurement is representative of the one
of the actual network: taking a larger or smaller sample leads
to significantly different estimations. In the two other cases
(WEB and IP), instead, the measurement seems to reach a state
where the observed values are significant.

C. Average distance and diameter.

We denote byd(u, v) the distance betweenu and v, i.e.
the number of links on a shortest path between them. We
denote byd(u) = 1

n

∑
v d(u, v) the average distance fromu

to all nodes, and byd = 1
n

∑
u d(u) = 1

n2

∑
u,v d(u, v) the

average distance in the considered graph. We also denote by
D = maxu,v d(u, v) the diameter of the graph,i.e. the largest
distance.

Notice that the definitions above make sense only for con-
nected graphs. In practice, one generally restricts the computa-
tions to the largest connected component, which is reasonable
since the vast majority of nodes are in this component (see
Section IV-A). We will follow this convention here; therefore,
in the rest of this subsection, the graph is supposed to be
connected (i.e. it has only one connected component) and the
computations are made only on the giant component of our
graphs.

Computation.

Computing distances from one node to all the others in an
undirected unweighted graph can be done inΘ(m) time and
Θ(n) space with a breadth-first search (BFS). One then obtains
all the distances in the graph, needed for exact average distance
and diameter computations, inΘ(n ·m) time andΘ(n) space.
This is space efficient, but not fast enough for our purpose
(see Section II). Faster algorithms have been proposed [9],
[49], [24], but they all have aΘ(n2) space cost, which is
prohibitive in our context. See [52] for a survey, and [45],
[22] for recent results on the topic.

Despite this, the average distance and the diameter are
among the most classical properties used to describe real-
world complex networks. Therefore, computing accurate es-
timations of the average distance and the diameter is needed,
and much work has already be done to this regard [52], [45],
[22].

A classical approach is to approximate the average distance
by using a limited number of BFS and then average over this
sample. See [22] for formal results on this. We used here
a variant of this approach: at stepi we choose a random
node, sayvi, and we compute its average distance to all
other nodes,d(vi), in time Θ(m) and spaceΘ(n). Then we
compute thei-th approximation of the average distance as
di = 1

i

∑i

j=1 d(vj). The loop ends at the firsti > imin

such that the variations in the estimations have been less than
ǫ during the lastimin steps, i.e. |dj+1 − dj | < ǫ, for all
j, i − imin ≤ j < i. The variablesimin and ǫ are parameters
used to ensure that at leastimin iterations are processed, and
that the variation during theimin last iterations is no more
thanǫ. In all the computations below, we tookimin = 10 and
ǫ = 0.1.

Such approaches are much less relevant for notions like the
diameter, which is a worst case notion: by computing the worst
case on a sample, one may miss a significantly worse case.
Instead, we propose simple and efficient algorithms to find
lower and upper bounds for the diameter.

First notice that the diameter of a graph is at least the
height of any BFS tree of this graph. Going further, it is
shown in [18], [17] that the following algorithm finds excellent
approximations of the diameter of graphs in some specific
cases: given a randomly chosen nodev, one first finds the
node u which is the further fromv using a BFS, and then
processes a new BFS fromu; then the lower bound obtained
from u is at least as good as the one obtained fromv, and is
very close to the diameter for some graph classes.

Now, notice that the diameter of a graph cannot be larger
than the diameter of any of its (connected) subgraphs, in
particular of its BFS trees. Therefore the diameter is bounded
by the largest distance in any of its BFS trees, which can be
computed inΘ(n) time and space, once the BFS tree is given.
One then obtains an upper bound for the diameter in the graph.

We finally iterate the following to find accurate bounds for
the diameter. Randomly choose a node and use it to find a
lower bound using the algorithm described above; then choose
a node in decreasing order of degrees and use it to find an
upper bound as described above. In the latter, nodes are chosen
in decreasing order of their degrees because high degree nodes
intuitively lead to BFS trees with smaller diameter. We iterate
this at least10 times, and until the difference between the
two bounds becomes lower than5. In the vast majority of the
cases considered here, the10 initial steps are sufficient. Since
each step needs onlyΘ(m) time andΘ(n) space, the overall
algorithm performs very well in our context.

Usual assumptions and results.

It appeared in various contexts (see for instance [51], [33],
[7], [16]) that the average distance and the diameter of real-
world complex networks is much lower than expected, leading
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to the so-calledsmall-world effect: any pair of nodes tends
to be connected by very short paths. Going further, both
quantities are also supposed to grow slowly with the number
of nodesn in the graph (like its logarithm or even slower).

Fig. 7. Estimation of the average distance and bounds for the diameter, as
a function of the sample size. From left to right and top to bottom: INET,
P2P, WEB and IP graphs.

Figure 7 shows several things. First, the obtained bounds for
the diameter are very tight and give a precise information onits
actual value. The heuristics described above therefore arevery
efficient and provide a good alternative to previous methodsin
our context. These plots also indicate that our approximation
of the average distance is consistent: if the randomly chosen
nodes had a significant impact on our evaluation, then the
corresponding plots would not be smooth.

Concerning the obtained values themselves, they clearly
confirm that both the average distance and the diameter are
very small compared to the size of the graphs. However, their
evolution is in sharp contrast with the usual assumptions in
the case ofINET and IP: both the average distance and the
diameter are stable or even decrease8 with the size of the
sample in these cases (with a sharp increase at the end for the
diameter ofINET). In the case ofWEB, however, the observed
behavior fits very well classical assumptions. The situation is
not so clear forIP: the values seem stable, but they may grow
very slowly.

These surprising observations may have a simple explana-
tion. Indeed, the usual assumptions concerning average dis-
tance and diameter are strongly supported by the fact that the
average distance and diameter of various random graphs (used
to model complex networks) grow with their size. However,
in these models, the average degreedo generally is supposed
to be a constant independent of the size. If it is not, then the
average distance in these graphs typically grows aslog(n)

log(do)
[13], [44]. This means that, ifdo grows with n as observed
in Section IV-B, it is not surprising that the average distance
and the diameter are stable or decrease. Likewise, in the case
of WEB where the average degree is constant, the average
distance and the diameter should increase slowly, which is
in accordance with our observations.

8Similar behaviors were observed in [40] in the context of dynamic graphs,
leading to the claim that these graphs haveshrinking diameters.

D. Degree distribution.

The degree distribution of a graph is the proportionpk of
nodes of degree exactlyk in the graph, for allk. Given the
encoding we use, its computation is inΘ(n) time and space.

Degree distributions may be homogeneous (all the values
are close to the average, like in Poisson and Gaussian distri-
butions), or heterogeneous (there is a huge variability between
degrees, with several orders of magnitude between them).
When a distribution is heterogeneous, it makes sense to try
to measure this heterogeneity rather than the average value. In
some cases, this can be done by fitting the distribution by a
power-law, i.e. a distribution of the formpk ∼ k−α. In such
cases, the exponentα may be considered as an indicator of
how heterogeneous the distribution is.

Usual assumptions and results.

Degree distributions of complex networks have been iden-
tified as a key property since they are very different from
what was thought until recently [23], [33], and since it was
proved that they have a crucial impact on phenomena of high
interest like network robustness [8], [32] or diffusion processes
[46], [25]. They are considered to be highly heterogeneous,
generally well fitted by a power-law, and independent of the
size of the graph.

We first present in Figure 8 the degree distributions observed
in our four cases at the end of the measurement procedure.
These plots confirm that the degrees are very heterogeneous,
with most nodes having a low degree (49%, 39%, 24% and
93% have degree lower than5 in INET, P2P, WEB and IP

respectively), but some nodes having a very high degree (up
to 35 455, 15 115, 1 776 858 and 259 905 in INET, P2P, WEB

andIP). We however note that theP2P degree distribution does
not have a heavy tail, but rather an exponential cutoff. All the
degree distributions are reasonably, but not perfectly, fitted by
power laws on several decades.

Fig. 8. Degree distributions of the final samples. From left toright and top
to bottom: INET, P2P, WEB and IP graphs.

But recall that our aim is to study how the degree distri-
bution evolveswhen the size of the sample grows. In order
to do this, we will first plot cumulative distributions (i.e.
for all k the proportionqk =

∑
i≥k pi of nodes of degree

at leastk), which are much easier to compare empirically
than actual distributions. In Figure 9 we show the cumulative
distributions in our four cases, with three different sample sizes
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each. These plots show that the fact that the degrees are highly
heterogeneous does not depend on the sample size: this is true
in all cases.

Fig. 9. Cumulative degree distributions for different samplesizes (1
3

and 2

3

of the total, and the total itself). From left to right and topto bottom: INET,
P2P, WEB and IP graphs.

One may however observe that forINET and IP the distri-
butions significantly change as the samples grow. In theINET

case one may even be tempted to say that theslope, and thus
the exponent of the power-law fit, evolves. We will however
avoid such conclusions here: the difference is not significant
enough to be observed this way.

In the case ofWEB, only the maximal degree significantly
changes. Notice that, in this case, the average degree is roughly
constant, meaning that this change in the maximal degree has
little impact on the average. This is due to the fact that it
concerns only very few nodes. In the case ofIP, the changes
are mostly between the values10 and200 of the degree; below
and above this interval, the distribution is very stable, and even
there the global shape changes only a little.

At this point, it is important to notice that the fact that
the degree distributions evolve (forINET and P2P) is not
surprising, since the average degree itself evolves, see Sec-
tion IV-B. In order to deepen this, we need a way to quantify
the difference between degree distributions, so that we may
observe their evolution more precisely.

The most efficient way to do so probably is to use the
classical Kolmogorov-Smirnof (K-S) statistical test, or asim-
ilar one. Given two distributionspk and p′k which we want
to compare, it consists in computing the maximal difference
maxk(|qk − q′k|) between their respective cumulative distribu-
tionsqk andq′k. This test is known to be especially well suited
to compare heterogeneous distributions, when one wants to
keep the comparison simple.

We display in Figure 10 the values obtained by the K-S test
when one compares the degree distribution at each step of the
measurement to the final one. This makes it possible to see
how the degree distribution evolves towards the final one as
the sample size grows.

The K-S test may first have a phase where it varies much but
finally reach a phase where its value oscillates close to0 (note
that it cannot be negative), indicating that the measurement
reached a stable view of the degree distribution. This is what

we observe in theWEB and IP cases, confirming the fact that
the degree distribution is very stable in these cases (Figure 9).
However, the K-S test has a totally different behavior in the
other cases: it shows that the degree distribution continuously
varies during the measurement. This means that its observation
on a particular sample cannot be considered as representative
in these cases. We will discuss this further in Section V.

Fig. 10. Evolution of the degree distribution according to aK-S test with
the final one, as a function of the sample size. From left to right and top to
bottom: INET, P2P, WEB and IP graphs.

Going further, notice that, in several cases, the evolutionof
the K-S test is strongly related to the one of the average degree,
see Figures 4 and 10: the plots are almost symmetrical for
INET andWEB, and in the two other cases there also seems to
be a strong relation between the two statistics. However, there
exist cases where their behaviors are very different, whichmay
be observed here for instance for small sizes of theIP samples.
This confirms that the K-S test captures other information
than simply the average degree, and therefore the similarities
observed here are nontrivial: here, the evolution of the degree
distributions is well captured by the evolution of the average
degree itself, as long as the sample is large enough. In other
words, when the average degree does not change, the KS-test
(and thus the main properties of the degree distribution) also
is stable, in our cases.

Let us finally notice that methods exist to automatically
compute the best power-law fit of a distribution according to
various criteria. The simplest one probably is a least-square
linear fit of the log-log plot, but it can be improved in several
ways and more subtle methods exist, see for instance [27],
[43]. Such automatic approaches are appealing in our context
since they would allow us to plot the evolution of the exponent
of the best fit as a function of the sample size.

We tried several such methods, but it appears that our
degree distributions are too far from perfect power-laws togive
significant results. We tried both with the classical distributions
and the cumulative ones, and both with the entire distributions
and with parts of them more likely to be well fitted by power-
laws. The results remain poor, and vary depending on the used
approach (including the fitting method). We therefore consider
them as not significant, and we do not present them here.
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E. Clustering and transitivity.

Despite having a small density, a graph may have a high
local density: if two nodes are close to each other in the
graph, they are linked together with a much higher probability
than two randomly chosen nodes. There is a variety of ways
to capture this, the most widely used being to compute the
clustering coefficient and/or the transitivity ratio, which we
will study in this section.

The clustering coefficient of a nodev (of degree at least
2) is the probability for any two neighbors ofv to be linked
together: cc(v) =

2·|EN(v)|

do(v)·(do(v)−1) whereEN(v) = E∩(N(v)×

N(v)) is the set of links between neighbors ofv. Notice that it
is nothing but the density of the neighborhood ofv, and in this
sense it captures the local density. The clustering coefficient of
the graph itself is the average of this value for all the nodes(of
degree at least2): cc = 1

|{v∈V, do(v)≥2}|

∑
v∈V, do(v)≥2 cc(v).

One may also define the transitivity ratio of the graph as
follows: tr = 3·N∆

N∨

whereN∆ denotes the number of triangles,
i.e. sets of three nodes with three links, in the graph andN∨

denotes the number of connected triples,i.e.sets of three nodes
with two links, in the graph.

Computing the clustering coefficient and transitivity ratio is
strongly related to counting and/or listing all the triangles in a
graph. These problems have been well studied, see [38] for a
survey. The fastest known algorithms have a space complexity
in Θ(n2), which is prohibitive in our context. Instead, one
generally uses a simple algorithm that computes the number
of triangles to which each link belongs inΘ(n · m) time and
Θ(1) space. This is too slow for our purpose, but more subtle
algorithms exist withΘ(m

3
2 ) time andΘ(n) space costs in

addition to theΘ(m) space needed to store the graph. Some
of them moreover have the advantage of performing better on
graphs with heterogeneous degree distributions like the ones
we consider here, see Section IV-D. We use here such an
algorithm, namelycompact-forward, presented in [47], [38].

Usual assumptions and results.

Concerning clustering coefficients, there are several assump-
tions commonly accepted as valid. The key ones are the fact
that the clustering coefficient and the transitivity ratio are
significantly (several orders of magnitude) larger than the
density, and that they are independent of the sample size,
as long as it is large enough. Moreover, the two notions are
generally thought as equivalent.

Let us first notice that, because of its definition (see Sec-
tion III) the IP graph can contain only very few triangles: most
of its links are between nodes inside the laboratory and nodes
in the outside internet, which prevents triangle formation.
Observing the clustering coefficient and the transitivity ratio
on such graphs makes little sense. Therefore, we will show
the plots but we will not discuss them for this case.

It appears clearly in Figure 11 that the values of both
statistics are indeed much larger than the density in our
examples (except forIP, as explained above). But it also
appears that their value is quite unstable (except in part for
P2P); for instance the transitivity ratio in theINET graph
experiences a variation of approximately4 times its own value.
Moreover, the clustering coefficient and the transitivity ratio

Fig. 11. The clustering coefficient and transitivity ratio as a function of the
sample size. From left to right and top to bottom:INET, P2P, WEB and IP

graphs.

evolve quite differently (they even have opposite slopes inthe
WEB case). Finally, there is no general behavior, except that the
observed value is unstable in most cases. This indicates that
it is unlikely that one may infer the clustering coefficient or
the transitivity ratio of the underlying complex network from
such measurements, and that the values obtained on a given
sample are not representative (except the transitivity ratio of
P2P, in our cases). We will discuss this further in Section V.

At this point, it is important to notice that for the statistics
we observed previously, each one of our graphs conformed to
either all or none of the usual assumptions. This is not the
case anymore when we take the clustering coefficient and the
transitivity ratio into account. Typically, despite the fact that it
conforms to all other classical assumptions on the properties
we studied until now,WEB does not have stable values for
these new statistics. Conversely, the transitivity ratio of P2P is
very stable whereas its observed properties did not match usual
assumptions until now. This shows that, while the properties
studied in previous sections seem to be strongly related to the
average degree, the ones observed here are not.

Fig. 12. Maximal degree as a function of the sample size. From left to right
and top to bottom:INET, P2P, WEB and IP graphs.

One may therefore investigate other explanations. We al-
ready observed in Section IV-D that, in the case ofWEB, the
maximal degree is not directly related to the average degree:
it varies significantly though the global distribution and the
average degree are stable. Going further, we plot the maximal
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Fig. 13. Number of triangles divided by the square of the maximaldegree,
as a function of the sample size. From left to right and top to bottom: INET,
P2P, WEB and IP graphs.

degreedmax of our samples as a function of their size in
Figure 12. It seems that it is correlated to the variations of
the transitivity ratio. This is due to the fact that the maximal
degree node plays a key role in the number of connected triples
in the graph: it induces approximatelydmax

2 such triples.
Therefore, any strong increase of the maximal degree induces
a decrease of the transitivity ratio, and when the maximal
degree remains stable the transitivity ratio tends to grow or
to stay stable9. This is confirmed by the plot of the number
of triangles divided by the square of the maximal degree, as
a function of the sample size, Figure 13, which has a shape
similar to the transitivity plots.

Fig. 14. Clustering coefficient divided by the density, as a function of the
sample size. From left to right and top to bottom:INET, P2P, WEB and IP

graphs.

Concerning the clustering coefficient, which captures the
local density, the important points in usual assumptions are
that it is several orders of magnitude larger than the (global)
density and that it is independent of the sample size. Since
the second part of this claim is false, and since the usual
assumptions on density are also false, one may wonder how
the ratio between the two values evolves. Figure 14 shows that
this ratio tends to be constant when the sample becomes very

9As a consequence, one may consider that the transitivity ratio is not
relevant in graphs where a few nodes have a huge degree: thesenodes
dominate the behavior of this statistics. This has already been discussed, see
for instance [48], but this is out of the scope of this contribution.

large, especially for theP2P and IP cases. This is a striking
observation indicating that the ratio between density and
clustering coefficient may be a much more relevant statistical
property than the clustering coefficient in our context: it would
make sense to seek accurate estimations of this ratio using
practical measurements, rather than estimations of the two
involved statistics on their own.

V. CONCLUSION AND DISCUSSION.

In this paper, we propose the first practical method to rig-
orously evaluate the relevance of properties observed on large
scale complex network measurements. It consists in studying
how these properties evolve when the sample grows during the
measurement. Complementary to other contributions to this
field [35], [10], [6], [28], [20], this method deals directlywith
real-world data, which has the key advantage of leading to
practical results.

We applied this methodology to very large measurements of
four different kinds of complex networks. These data-sets are
significantly larger than the ones commonly used, and they are
representative of the wide variety of complex networks studied
in computer science. The classical approach for studying
these networks is to collect as much data as possible (which
is limited by computing capabilities and measurement time,
at least), and then to assume that the obtained sample is
representative of the whole.

Our key result is that our methodolody makes it possible to
rigorously identify cases where this approach is misleading,
whereas in other cases it makes sense and may lead to accurate
estimations.

In the case ofINET, for instance, the average degree of the
sample grows with its size (once it is large enough), which
shows clearly that the average degree observed on a particular
sample is certainly not the one of the whole graph. In the case
of WEB, on the contrary, the average degree reaches a stable
value, indicating that collecting more data probably wouldnot
change it. Despite this, the transitivity ratio of this graph is
still unstable by the end of the measurement, which shows
that a given measurement may reach a stable regime for some
of its basic properties while others are still unstable. This is
confirmed byP2P, which has a stable transitivity ratio but
unstable average degree. These last observations also showthat
there is no clear hierarchy between properties: the stability or
unstability of some properties are independent of each other.

Some observations we made on these examples are in
sharp contrast with usual assumptions, thus proving that these
assumptions are erroneous in these cases. Other observations
are in accordance with them, which provides for the first
time a rigorous empirical argument for the relevance of these
assumptions in some cases.

More generally, the proposed method makes it possible to
distinguish between the two following cases:

• either the property of interest does not reach a stable
regime during the measurement, and then this property
observed on a given sample certainly is erroneous;

• or the property does reach a stable regime, and then we
may conclude that it will probably not evolve anymore
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and that it is indeed a property of the whole network
(though it is possibly biased, see below).

The fact that, even if it is stable, the observed property may
be biased is worth deepening. Indeed, it may actually evolve
again when the sample grows further (like the average degree
in our INET measurement for instance, see Figure 4). This
makes the collection of very large data-sets a key issue for
our methodology.

This does not entirely solve the problem, however: the
property may remain stable until the sample spans almost all
the network under concern, but still be significantly biased;
finite-size effects may lead to variations in the observation
at the end of the measurement (like at its beginning). More-
over, the fact that the underlying network evolves during the
measurement should not be neglected anymore. Going even
further, one may notice that some measurement techniques
are unable to provide a complete view of the network under
concern, however how long the measurement is continued (for
instance, some links may be invisible from the sources used
in a traceroute-based measurement).

Estimating such biases currently is a challenging area of
research in which some significant contributions have been
made [35], [10], [6], [28], [20], but most remains to be done.
The ultimate goal in this direction is to be able to accurately
evaluate the actual properties of a complex network from
the observation of a (biased) measurement. In the absence
of such results, researchers have no choice but to rely on
the assumption that the properties they observe do not suffer
from such a bias; our method makes it possible to distinguish
between cases where this assumption is reasonable, and cases
where it must be discarded.

Finally, two other observations obtained in this contribution
are worth pointing out.

First, it must be clear that the observedqualitativeproperties
are reliable: they do not depend on the sample size, as long
as it is not trivially small. In particular, the average degree
is small, the density is close to0, the diameter and average
distance are small, the degree distributions are heterogeneous,
and the clustering coefficient and transitivity ratio are signif-
icantly larger than the density (except forIP, as explained
in Section IV-E). This is in full accordance with classical
qualitativeassumptions.

However, as discussed in Section I, obtaining accurate
estimations of thevalues of the properties is crucial for
modeling and simulation: these values are used as key pa-
rameters in these contexts and have significant impact on the
obtained results. Knowing the qualitative behavior of these
properties therefore is unsufficient, and our method constitutes
a significant step towards rigorously evaluating their actual
values.

Secondly, we gave strong evidence of the fact that the
evolution of many subtle statistics is well captured by the
evolution of much more basic statistics: the average degree
seems to control the general behavior of the average dis-
tance and diameter, as well as the evolution of the degree
distribution, and the transitivity ratio evolution seems to be

governed by the ones of the maximal degree and density. The
more complex statistics are not totally controlled by simpler
ones, however, and investigating the difference between their
behavior and what can be expected would certainly yield
enlightening insights. In this spirit, we have shown that the
ratio between the clustering coefficient and the density seems
significantly more stable than these two statistics on theirown.

These observations have to be deepened, but they indicate
that the set of relevant statistics for the study of complex
networks might be different from what is usually thought:
some statistics may be redundant, and other statistics may be
more relevant than classical ones (in particular, concerning
their accurate evaluation). This raises promising directions for
further investigation, in both the analysis and modeling areas.
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Grands Ŕeseaux d’Interactions) projects.

REFERENCES

[1] Caida – skitter project. http://www.caida.org/tools/measurement/skitter/.
[2] Data and program – authors’ web page. Removed for anonymous

version.
[3] Lugdunum software. http://lugdunum2k.free.fr/.
[4] Metrosec project. http://www2.laas.fr/METROSEC/.
[5] Webgraph project. http://webgraph.dsi.unimi.it/.
[6] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore. On the bias of

traceroute sampling. InACM STOC, 2005.
[7] R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of the world wide

web. Nature, 401, 1999.
[8] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance in

complex networks.Nature, 406, 2000.
[9] N. Alon, Z. Galil, O. Margalit, and M. Naor. Witnesses forboolean

matrix multiplication and for shortest paths. InIEEE FOCS, 1992.
[10] P. Barford, A. Bestavros, J. Byers, and M. Crovella. On the marginal

utility of network topology measurements. InACM/SIGCOMM IMC,
2001.

[11] P. Boldi and S. Vigna. The webgraph framework i: compression
techniques. InWWW, 2004.

[12] P. Boldi and S. Vigna. The webgraph framework ii: Codes for the
world-wide web. InDCC, 2004.

[13] B. Bollobas.Random Graphs. Cambridge University Press, 2001.
[14] S. Bornholdt and H.G. Schuster, editors.Hankbook of Graphs and

Networks: From the Genome to the Internet. Wiley-VCH, 2003.
[15] U. Brandes and T. Erlebach, editors.Network Analysis: Methodological

Foundations. LNCS, Springer-Verlag, 2005.
[16] A.Z. Broder, S.R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,

R. Stata, A. Tomkins, and J. L. Wiener. Graph structure in the web.
Computer Networks, 33, 2000.

[17] D. Corneil, F. Dragan, M. Habib, and C. Paul. Diameter determination
on restricted graph families.Discrete Applied Mathematics, 113(2-3),
2001.

[18] D.G. Corneil, F.F. Dragan, and E. Khler. On the power of bfs to
determine a graph’s diameter.Networks, 42 (4), 2003.

[19] J.-J. Pansiot D. Magoni. Analysis of the autonomous system network
topology. ACM/SIGCOMM Computer Communication Review, 31(3),
2001.

[20] L. Dall’Asta, J.I. Alvarez-Hamelin, A. Barrat, A. Vazquez, and
A. Vespignani. A statistical approach to the traceroute-like exploration
of networks: theory and simulations. InCAAN, 2004.



12

[21] S.N. Dorogovtsev and J.F.F. Mendes.Handbook of Graphs and Net-
works: From the Genome to the Internet, chapter Accelerated growth of
networks. Wiley-VCH, 2002.

[22] D. Eppstein and J. Wang. Fast approximation of centrality. Journal of
Graph Algorithms and Applications, 8 (1), 2004.

[23] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships
of the internet topology. InACM SIGCOMM, 1999.

[24] T. Feder and R. Motwani. Clique partitions, graph compression, and
speeding-up algorithms. InACM STOC, 1991.

[25] A. Ganesh, L. Massoulie, and D. Towsley. The effect of network
topology on the spread of epidemics. InIEEE INFOCOM, 2005.

[26] C. Gkantsidis, M. Mihail, and E. Zegura. Spectral analysis of internet
topologies. InIEEE INFOCOM, 2003.

[27] Michel L. Goldstein, Steven A. Morris, and Gary G. Yen. Problems
with fitting to the power-law distribution.European Physics Journal B,
41, 2004.

[28] J.-L. Guillaume and M. Latapy. Relevance of massively distributed
explorations of the internet topology: Simulation results.In IEEE
INFOCOM, 2005.

[29] J.-L. Guillaume, S. Le-Blond, and M. Latapy. Clusteringin p2p
exchanges and consequences on performances. InIPTPS, 2005.

[30] S. Handurukande, A.-M. Kermarrec, F. Le Fessant, and L. Massoulíe.
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