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Abstract

In this paper, we introduce new combinatorial objects, the pseudo-
permutations, which are a generalization of the permutations. Pseudo-
permutations naturally appear in various fields of Computer Science
and Mathematics. We provide the first combinatorial results on these
objects: we study the classical statistics of enumeration, inversions,
descents and we prove that the set of all the pseudo-permutations is a
lattice.
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1 Introduction

In various fields of Computer Science (Artificial Intelligence, Knowledge rep-
resentation, ...), one has to deal with temporal knowledge: one considers a set
of events which happen at certain dates, and wants to use this information to
solve a problem, take a decision. However, it is often not meaningful when the
events occur, while the relevant information is the temporal relations between
events: did event ¢ happened before, during or after event 5 7 In this con-
text, it is natural to represent the temporal relations between n events by an
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ordered sequence of nonempty parts of [ 1,7 ] such that each integer appears
exactly once. If 7 is in a part of [ 1,n] which appears in the sequence before
the part which contains j, then the event ¢ happened before the event j. If
they appear in the same part, they occured simultaneously. For example, the
sequence {1}{3,4}{2} means that event 1 occured first, event 2 occured last,
and events 3 and 4 occured at the same time. In the following, we will call
such a sequence a pseudo-permutation of order n (in the example, n = 4), we
will use parenthesis instead of braces, and we will remove unnecessary comas.
Therefore, we will write the example as (1)(34)(2).

Having defined the pseudo-permutations, one can study their combinato-
rial properties. They appear to have a very rich structure and many inter-
esting properties. Among these, one can see that their enumeration is re-
lated to Eulerian numbers, and that an inversion table associated with each
pseudo-permutation can be defined. This induces a partial order on pseudo-
permutations compatible with the inversion tables and we will see that this
order is a lattice, as it is the case for the usual permutations. One can also
define the descents of a pseudo-permutation and prove that this notion has
the same properties as the usual descents on permutations. About the lattice
structure, one can also see that the set can be divided in connected components
that are hypercubes, the dimensions of which can naturally be interpretated
in combinatorial terms. The aim of this paper is to show how rich can be
this structure and to give a first insight in it, given that a second paper is in
preparation to provide new interesting properties about pseudo-permutations.
Since this paper is intented to present this new object, we will only give the
sketches of the proofs and will publish a long version elsewhere.

The paper is structured as follows. We first recall the definitions of a lattice
and the usual properties of Eulerian numbers (Section 2). We then concentrate
on the pseudo-permutations themselves and define the pseudo-permutohedron
(Section 3). Next, we prove their first combinatorial properties (Section 4) and
their first lattice properties (Section 5).

2 Preliminaries

We recall here a few definitions and basic results used in the rest of the paper.
We will also use the following standard notations. We will denote by [, 7]
the set {k € N|i <k < j} and by &, the set of all the permutations of order
n, i.e. the set of all the sequences of n integers which contain each integer in
[1,n] exactly once. The permutohedron of order n is then the directed graph
defined over &,, by: there is an edge from o to ¢’ if ¢’ is obtained from o by
switching two neighbour integers ¢ and j in o such that ¢ < j.



2.1 Descents and Eulerian numbers

The Eulerian numbers are very classical numbers and the reader can refer
to [FS70, Com70] for a complete view about them. In this paper, we will only
recall their usual definitions and properties.

Let o be a permutation. One says that ¢ has a descent in 7, or equivalently
that ¢ is a descent of o, if 0(i) > o(i + 1). The descent number of ¢ is then
the number of descents of o. The descent set of o is the set of the descents of
o. If one denotes by a,; the number of elements of G,, with k descents, one
has the following formulas:

Upk = Apnn—k—1 = (’I’L - k)an—l,k—l + (k + 1)an—1,ka

with n > 1 and & > 1. Moreover, a,o = 1 and agx = 0 for all n and k. The
Eulerian numbers are very close to these numbers since they can be defined
by A,k = an-1- Moreover, the generating series of these numbers is known
and one has:

+ Z One—1" U = STty _
1<k<n
One can define in the same way the rises of a permutation and the rise
number of a permutation.

2.2 Lattice theory

We recall that an order relation is a binary relation < over a set, such that for
all z, y and z in this set, x < z (reflexivity), x < y and y < z implies z < z
(transitivity), and = < y and y < x implies z = y (antisymmetry). Such a
relation is often called a partial order. The set is then a partially ordered set
or, for short, a poset.

A lattice is a poset such that any two elements a and b have a least upper
bound (called supremum of a and b and denoted by a V b) and a greatest lower
bound (called infimum of a and b and denoted by aAb). The element aVb is the
smallest element among the elements greater than both a and b. The element
a N b is defined dually. Lattices are strongly structured sets, and many general
results are known about them. For example, efficient coding and algorithms
are known for lattices. For more details, see for example [DP90].

3 Pseudo-permutations

3.1 Definitions

Let n be an integer. The set P(n) of the pseudo-permutations of order n
is the set of sequences of non-empty parentheses such that each integer in



[1,n] appears exactly once. In other words, the set P(n) is the set of ordered
partitions® of [ 1,n] with nonempty parts.
For example, here is the complete set of P(3):

PG ={ MER)G), ME)?2), 2)MEG), 2)B)1), B)M)(2), 3)2)1),
(1)(23), (2)(13), (3)(12), (23)(1), (13)(2), (12)(3), (123) }

Since the order inside the parentheses is irrelevant, we will generally write
the integers in the parentheses in increasing order. Notice also that there exists
an obvious embedding from the permutations into the pseudo-permutations
that maps a permutation o = (01, ...,0y) to (o1)(02) -« - (on)-

As for the usual permutations, one can generate a graph which vertices are
the elements of P(n) and which edges are defined according to the following
operators:

e The operator M; acts on the i-th and the 7+ 1-th parentheses of a pseudo-
permutation as follows: if each element of the i-th parenthese is smaller
than all the elements of the (i + 1)-th, then one can merge these two
parentheses into one single parenthese which contains the union of the
elements of these two parentheses.

e The operator S;; acts on the i-th parenthese of a pseudo-permutation
as follows: it splits this parenthese into two parentheses, the second one
containing the j smallest elements of the initial parenthese and the first
one containing the others.

For example, one can apply My, My, S5 1, S32and Sy 1 to o = (7)(3)(568)(12)(4):
o % (7)(3568)(12)(4), 0 % (7)(3)(568)(124), o = (7)(3)(68)(5)(12)(4),
o =5 (7)(3)(8)(56)(12)(4) and & = (7)(3)(568)(2)(1)(4).

We can now define the pseudo-permutohedron, denoted by &(n), as the
directed graph one obtains by iterating these two operators from the element
(1)(2)- - - (n). For example, we give in Figure 1 the graphs &(3) and &(4).

We will now see some properties of the pseudo-permutations and their
graph, first from the classical combinatorial point of view, then from the lattice
point of view.

4 Combinatorial properties of (n)

In this section, we give enumeration results, combinatorial properties and
structural properties of the set PB(n) and its graph. Let us begin with the

LA partition of a set S is a set of subsets S, S, ..., Sk of S such that UF_;S; =S and
for all ¢ # j, SiNS; = 0. The S; are then the parts of the partition. A partition is ordered
if we consider a sequence of subsets instead of a set of subsets.
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Figure 1: The graphs &(3) (left) and &(4) (right). The orientation of the
edges is not displayed since it is always from the topmost vertex to the other.

most simple enumerations. We remind to the reader that we will not give the
full proofs of the properties since they are long, technical, and do not give any
further insight in the structure of pseudo-permutations. They will be pub-
lished in the long version of the paper. However, we will always give a few
hints about the proofs so that the reader can believe in the claims.

4.1 Enumeration of B(n)

As defined, the set PB(n) is the set of ordered partitions of n elements with
nonempty parts. Therefore, it satisfies the induction relation:

n—1
n .
Card(P(n)) = (Z,)Card(iB(z)).
i=0
One can also transform the set 3(n) in order to find a direct (well-known)
formula, related to the Eulerian numbers.

Let n be an integer. As already noticed, the order of the elements in a given
parenthese is irrelevant, so we can assume that they are written in increasing
order. Given an element o of PB(n), one can then define its corresponding
permutation as the permutation obtained by removing all the parentheses.
For example, the corresponding permutation of (1)(34)(2)(5) is (13425).

One can then consider the classes of the pseudo-permutations which have
the same corresponding permutation: for example, the pseudo-permutations
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(123), (1)(23), (12)(3), and (1)(2)(3) form a class of PB(n). It is clear that, given
a permutation o, the number of pseudo-permutations in the corresponding
class is to the number of correct sets of parentheses one can generate. These
sets correspond to compositions of n and one can easily see that a composition
I = (dy,...,1p) is correct if and only if the descent set of o is included in
the set {41,4; + @2,...,91 +--- ,ip}. It then comes that the number of correct
parentheses for a given permutation ¢ of order n is equal to 2" %! where £ is
the number of descents of o.

Finally, since the number of pseudo-permutations generated from a permu-
tation only depends on the order of the descent set of this permutation, one
makes the connection with the Eulerian numbers and one derives the following
formula:

n—1 n—1
Card(P(n)) = Y Anp2" * 1 =" A, 2%
k=0 k=0

4.2 Inversions

In this subsection, we generalize to the pseudo-permutations the well-known
statistics of inversions over usual permutations.

4.2.1 Table of inversions

Let n be an integer and let 7 be an element of 3(n). For every pair (i, j) with
1<14,7 <nandi# j, we define the value of the inversion (i, j) as follows:

e If i and j are in the same parenthese, this value is equal to %

e If + and j are in distinct parentheses, this value is equal to 0 if the
parenthese of the smallest integer is before the parenthese of the greatest
one in 7 and it is equal to 1 in the other case.

The table of inversions of 7 is then the list of the non zero-valued pairs
(4,7) with 1 <4 < j < n of integers given with the value of the inversion (i, 7).
The number of inversions of 7 is then the sum for all 1 < ¢ < 57 < n of the
inversions (i, 7).

For example, the table of inversions of the pseudo-permutation (54)(31)(2)
is

{309 @0, 19, @3, @1, @5), 6.0, 65, 545},

and its number of inversions is 8.



4.2.2 Characterization of the inversion sets

One can now ask about the reverse problem: given an inversion table, does it
exist a pseudo-permutation that has this inversion table and, when the answer
is yes, how can one rebuild the corresponding pseudo-permutation.

As for the usual permutations, the answer to the first question is negative
in general and one can get the following characterization which generalizes the
characterization of the correct sets for the usual inversion table:

Theorem 4.1 Let n be an integer and L be a list of the pairs (i,7), with
1 <i<j<mn, each pair having a coefficient in the set {0, %, 1}. Then L is
the inversion table of a pseudo-permutation if and only if each of the following

implications holds:

e If the coefficient of (i,7) and (i, k) is } then the coefficient of (j,k) is
also 1.
2

e [f the coefficients of (i,7) and (j, k) both are 1, and if i < j < k then the
coefficient of (i, k) is also 1.

e If the coefficient of (i, k) is 1, then for every j € [i,k], either the coef-
ficient of (i,7) or the coefficient of (j,k) is also 1.

o [f the coefficient of (i, k) is %, then for every j € [i,k], either the coef-
ficient of (i,7), either the coefficient of (j,k) is 1, or both coefficients of
(4,4) and (j,k) are 3.

Proof — We will not give the complete proof of this theorem but let us see
why all these conditions are necessary:

e The first condition only says that if 7, 7 and ¢, k are in the same parenthese
then so are j and k.

e The second condition only says that if j precedes i and k precedes 7,
then k precedes i.

e The third condition says that if k& precedes ¢ then, whatever the position
of j is, either k precedes j or j precedes i.

e The fourth condition does the same as the third one when %k is in the
same parenthese as 1.

The end of the proof rebuilds from a set that satisfies the four conditions
the corresponding pseudo-permutation. This step is very technical, so it is
omitted here. -



With this notion of table of inversions, one can derive a natural partial
order on pseudo-permutations: ¢ is smaller that 7 if the table of inversions of
o is included in the table of 7.

We then define the graph of inversions of all the elements of (n) as the
covering relation of this poset, i.e. the transitive and reflexive reduction of the
order relation. The next theorem makes the connection between this graph
and the pseudo-permutohedron, which gives much information on &(n).

Theorem 4.2 The graph of inversions of B(n) is the same as its pseudo-
permutohedron.

Proof — The proof of this theorem is very technical and we will omit it since
we will only need its statement in the rest of the paper. -

4.3 Descents of elements of B(n)

Let o be a pseudo-permutation. We define its descent set and its descent
number respectively as the descent set and the descent number of its cor-
responding permutation. We define in the same way the rise number of a
pseudo-permutation. One then has the following properties:

Proposition 4.3 Let o be a pseudo-permutation. Then the number of incom-
ing edges of o in the pseudo-permutohedron is equal to the descent number of
.

Proposition 4.4 Let 0 be a pseudo-permutation. Then the number of out-
going edges of o in the pseudo-permutohedron is equal to the rise number of
.

Proof — These two propositions can be proved in the same way, first showing
that the parentheses play disjoint roles, so that one can concentrate on a given
parenthese, then studying the case of a single pair of parentheses and end the
proof by induction. -

With the help of one of the previous properties, one can easily establish
the following enumeration result:

Corollary 4.5 Let n be an integer. The number of edges of the pseudo-
permutohedron of order n is given by:

n—1
D Ap g2k
k=0



5 Lattice properties of B(n)

5.1 &(n) is a lattice

In this subsection, we prove that the pseudo-permutohedron is a lattice. To
prove this property, we first define the infimum and the supremum of two
given elements. We actually use the fact that &(n) is nothing but the inversion
graph of PB(n) (Theorem 4.2), and we prove that this last graph is the covering
relation of a lattice.

To acheive this, we introduce the trans-union of two given pseudo-psemutations.
First consider the table of inversions of these elements. Then make the union
of these tables, taking the maximum value for each pair (7, 7). Then compute
the transitive closure of this table, that is the smallest table that contains the
union and satisfies the first two properties of Theorem 4.1. This last table is
the trans-union of the two elements. For example, if we consider (1)(23) and
(12)(3) with inversion tables respectivly {3(2,3)} and {3(1,2)}, their trans-
union is {1(1,2),%(2,3),5(1,3)}. Then one has:

Proposition 5.1 Let us consider two elements of a pseudo-permutohedron.
Then their trans-union table is the inversion table of a pseudo-permutation
that belong to the same pseudo-permutohedron. Moreover, this element is their
nfimum.

Proof — This proof has two parts that are not very complicated but quite long
and techincal. First, one checks that the trans-union satisfies the four proper-
ties of Theorem 4.1, so that it is the inversion table of a pseudo-permutation.
Then one proves that this table is included in the one of each element greater
than the two elements, and so it is the greatest such element (by definition of
the order over pseudo-permutations in the inversion graph), i.e. the infimum.g

As it is the case for other lattices, one cannot define the supremum of two
elements in such a simple way. However, the pseudo-permutohedron has an
interesting property we can use for this. If we say that the dual of an element
is obtained by reading it from right to left, then the graph obtained from &(n)
by replacing each pseudo-permutation by its dual and by reversing each edge
is B(n) itself. &(n) is then said to be auto-dual. Then, we obviously have:

Proposition 5.2 Let us consider two elements of a pseudo-permutohedron.
Their supremum s the dual of the infimum of their duals.

We can therefore state the main result of this section:

Theorem 5.3 For all integer n, the pseudo-permutohedron of order n is a
lattice.



(D).

STmE» a2

L. ) ;(?)(1)(3)>

Az 123y @13y

@D L@@
@02 @3

B C©leleh)

Figure 2: &(3) is a disjoint union of hypercubes.

5.2 Cutting the pseudo-permutohedron

Let us consider a pseudo-permutohedron and let us consider the connected
components obtained by removing the edges which correspond to the S oper-
ators. Then each connected component is a hypercube that contains all the
elements of the pseudo-permutohedron which have the same corresponding per-
mutation. The top-most element is built from the permutation by cutting it as
the concatenation of the smallest possible number of decreasing sequences and
putting these sequences into the same parentheses. For example, if the corre-
sponding permutation is (7614352) then the top-most element is (761)(43)(52),
ie. (167)(34)(25).

The dimension of the hypercube is equal to the number of descents of its
corresponding permutation, i.e. the number of ingoing edges of its elements.
As an example, we give the decomposition of P3(3) as an union of hypercubes
in Figure 2.

As we saw before, the pseudo-permutohedron is auto-dual, therefore all the
properties one can establish for it can be dualized. Since the C' edges and the
E edges are exchanged in this process, one can derive that the number of C
edges is the half of the total number of edges of &(n). The previous results
then allows to make in another way the enumeration of the edges of &(n).

Conclusion

In this paper, we have shown a few properties of a new combinatorial object.
These properties are very essential since they are generalizations of the key
properties of the symmetric group, which allows us to think that many other
statistics defined on the symmetric group have a real meaning in this context.
This paper only opens the way to other combinatorial and lattice results about
the symmetric group in our context to reach a real analog of the permutohe-
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dron studies. We believe that the pseudo-permutohedron is an interesting and
meaningful extension of the permutohedron, and we hope that some work will
be done to extend the classical results to this case, for example the geometrical
interpretation of the permutohedron.

Another interesting direction of investigation with many applications is to
consider pseudo-permutations with multiple occurences of the integers. This
gives a very general and powerful model which makes it possible to represent
the relations between multiple events which can have a temporal length. It
seems that most of the results presented here are still valid in this context,
and some new questions arise.
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