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Abstract

It is well known now that most real-world complex networksvlhasome properties
which make them very different from random networks. In tlasec of interactions
between authors of messages in a mailing-list, however, ki-level structure may
be responsible for some of these properties. We propose heigorous but simple
formalism to investigate this question, and we apply it tcaachive of the Debian user
mailing-list. This leads to the identification of some prdpes which may indeed be
explained this way, and of some properties which need demmpaysis.

INTRODUCTION.

It makes no doubt that understanding how individuals itiera a social framework is a key issue for
sociology and in many other contexts like economy, managégnaeathropology, etc. Collecting large-scale
data on such interactions was however a challenging, almeissible, task until recently. The birth and
development of computation and communication capalsliiie particular the internet) opened unleashing
opportunities for the study of interactions between irdlinls. Indeed, it is easy in a digital framework
(as opposed toeal world) to collect large amounts of traces of such interaxgiorhis can be done for
instance on instant messaging applications [35], at e-heedl [18], at web or blog levels [12], [1], in
peer-to-peer systems [23], [31], [26], [25], and many aghdthe references cited here are only a few
examples of the huge amount of studies conducted recentlyisrarea, and made possible by this new
situation. See [3], [43], [48], [17] for surveys of the field.

It must however be clear that the data collected this wayrarennplete and often imprecise. It may be
significantly biased by the measurement process, see famites [29], [30]. Even more importantly, the
behaviors of individuals themselves may be influenced byctiramunication medium, see for instance
[7], [51]. These aspects must be taken into account in aryraigs study of individual interactions in a
numerical framework.

Our contribution lies in this context. It focuses on the iatgion network induced by exchanges between
authors in a mailing-list. This network may be viewed as thsidn of several pieces of interactions
centered on a given topic, captured by the notion of threathénmailing-list context. One may then
wonder if, and how, properties of the interaction networkyrbe induced by this underlying structure.
The aim of this paper is to answer this question.

Before entering in the core of the paper, we need some preliem (on the notions under study,
the context and methodology, Section I). We will then présesults on the analysis of the network we
consider (Section Il), and the multi-level formalism we pose for it (Section Ill). We then present results
on the two indermediate levels (Sections IV and V), and wellfinaresent and discuss our results in
Section VI.
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. PRELIMINARIES.

It appeared recently (at the end of the 90’s, [53]) that masid real-world complex networks have
several properties in common. They also have specific ptiegawhich make them different from each
other. These properties are useful to describe a given nletfwoa set of networks) and to obtain relevant
information from it (them). Since a few years, many such prtps have been defined and many special
cases have been studied, see the surveys [3], [43], [48]}, [17

Here we will observe some of these properties, starting floenmost basic ones and going to more
subtle ones, on an interaction network between authors iraiingrlist. We introduce these properties
below. Then we describe the context in which our work lieg] #re methodology we will use. Finally,
we will describe precisely the raw data on which our worka®li

The observed properties.

A network is modeled by a grapf = (V, E) whereV is the set of nodes anfil C V' x V is the
set of links. We will consider only undirected networks Herehich means that we make no distinction
between(u,v) € E and (v,u) € E. We will denote byN(v) = {(u,v) € E} the neighborhoodof a
nodew, the elements ofV(v) being theneighborsof v. The number of nodes iV (v) is the degreeof
v: d°(v) = |N(v)|.

The basic properties describing such a graph areiitg i.e. its number of nodess = |V| and its
number of linksm = |E|, its average degreé = 2, and itsdensityd(G) = % I.e. the number of
existing links divided by the number of possible links. Imet words,i(G) is the probability that two
(distinct) randomly chosen nodes are linked together.

Going further, one may define thdistanced(u,v) between two nodes and v in the graph as the
length of a shortest path betweerandwv, i.e. the minimal number of links one has to use to go from one
node to the other. Thaverage distancef the graph,d(G), is nothing but the average of the distances

for all pairs of nodesd(G) = 2, > uwey A(u,v). ThediameterD of the the graph is the largest distance

n2
between any two pairsh = max, ,ev (d(u, v)).

Notice that it is possible (and in general it is true) thatréhare some nodes between which no path
exists in the graph. To capture this, one may definectinected components$ the graph as the largest
sets of nodes such that there exists a path between any twmeme of a same set. If there is only one
such set, then the graph is said todmnectedIf there are several ones, then one of them is generally
much larger than the others; in such cases it is calledyifuet componenand its size is denoted by.

If the graph is not connected, then there exists pairs of :idde which the notion of distance is
undefined; one then usually only considers the giant compoifet exists. We will follow this convention
in this paper. Therefore, we consider that the notions dfadie defined above only concern the giant
component (we will see that the networks we will encounteéhaVve a giant component).

The next property is not this classical. It is tdegree distributioni.e. for all integer: the number of
nodes of degreé One may also observe the correlations between degreesedefs the average degree
of the neighbors of nodes of degreéefor each integet. Other notions concerning degrees have been
studied, like assortativity, but we do not use them here.

Another important kind of statistics aims at capturing aiomtof local density: it measures the
probability that two nodes are linked together, provideglythave a neighbor in common. In other words,
it is the probability that any two neighbors of any node arndeéid together. This is measured using the
clustering coefficienbf a nodev:

|En)| 2|En)

co(v) = NENCIED ™~ do(v)(d*(v) — 1)

“We will discuss this choice later in the paper.



where Ey ) = E N (N(v) x N(v)) is the set of links between neighbors afin other wordscc(v) is
the probability that any two neighbors ofare linked together. Notice that it is nothing but the deneit
the neighborhood of, and in this sense it captures the local density. It is unddfiior nodes of degree
lower than2.

The clustering coefficient of the graph itself then is therage of this value for all the nodes on which
it makes sensecc(G) = WEUGV 4o(v)>1 CC(v). Other notions of clustering coefficients have
been defined to capture ocal ensity but this one is suftid@nour purpose.

The distance may also be used to define a notioceotrality of nodes [52]. Let us denote hiv) the
average distance of to any node in the graphi(v) = £ >~ - d(v,u). Then one may consider thatis
more central thanu whend(v) is smaller thani(u). Other notions of centrality (like the degree itself or
the betweenness central{$2]) are often used, but they are out of the scope of this pape

All these notions naturally lead to the observation of tldéstributions and of their possible correlations,
which we detail now.

The distribution of an integer valued property is, for atieiger: the number of instances (nodes or pairs
of nodes in our context) for which this property has valu&or instance, the degree distribution is the
number of nodes having degréefor all 7. If the property is real-valued (like the clustering for teusce),
we take for all integet the number of instances for which the property has a valuedsat =°> and
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=405 and we plot it as a function o{— Distributions make it possible to observe the represmitiabf

tﬁ(g average value, and to identify non-typical cases.

Correlations between a properyand another property’ are usually captured by plotting the average
value of propertyP’ for nodes for which property’ has value, for all i. For instance, the degree-degree
correlations are studied by plotting, for eaghthe average degree of neighbors of nodes of degree
The degree-clustering (resp. degree-centrality) cdrogla are studied by plotting the average clustering
coefficient (resp. centrality) of nodes of degreas a function ofi. The clustering-centrality correlations
are studied by plotting the average centrality of nodes wstering betweerﬁ% and % as a function
of ;55- These plots make it easy to observe how a property tends teldted to another one, for instance
if highest degree nodes tend to be linked to highest degréesnor not, if they tend to have a high
clustering or not, and/or if they tend to have a high certyradr not.

One may of course consider many other statistics to descab®lex networks. We will focus here on
the statistics described above, which play a central roleomplex network studies and already provide
a powerful toolkit for their analysis.

Typical complex networks.

It appeared recently [53] that most large real-world completworks have several non-trivial properties
in common. First notice that, since we are concerned hete laigge networksy must be large. In most
real-world cases, is appeared thatis of the same order of magnitude asi.e. the average degree is
small compared ta. Therefore, the density generally is very smallG) ~ n(iffl) ~ % which is close
to 0 sincen is large.

It is now a well known fact that the average distance and thendter in real-world complex networks
are in general very smalkfall-world effect), even in very large ones, see for instance [36],.[38]s
is actually true in most graphs, since a small amount of rammass is sufficient to ensure this, see for
instance [53], [33], [19], [9], [42]. This property, despiit may have important consequences and should
be taken into account, therefore should not be considered sagnificant property of a given network.
We will discuss this in the methodology part below.

Another point which recieved recently much attention, sedrfstance [21], [5], [4], is the fact that the
degree distribution of most real-world complex networksiighly heterogeneous, often well fitted by a
power law:p, ~ k~ for an exponentv generally between and3.5. This means that, despite most nodes
have a (very) low degree, there exists nodes with a very hagrek. This implies in general that the




average degree is not a significant property, bringing maesk Information than the exponemtwhich
is a measurement of the heterogeneity of degrees.

If one samples a random graph with the same siee§ame number of nodesand linksm) as a given
real-world oné, thus with the same density, then the obtained degreelitibn is qualitatively different:
it follows a Poisson law (in which all the values are close®average). This means that the heterogeneous
degree distribution is not a trivial property, in the sersat it makes real-world complex networks very
different from most graphs (of which random graphs are rgtative). The degree correlations and
other properties on degrees, on the countrary, behaveaetitig depending on the complex network under
concern.

Going further, the clustering coefficient is quite large imshreal-world complex networks: despite
most pairs of nodes are not linked together (the density iig l@v), if two nodes have a neighbor in
common then they are linked together with probability sigantly higher thar) (the local density if
high). However, the clustering coefficient distributiotisir correlation with degrees, and other properties
related to clustering, behave differently depending onciwaplex network under concern.

If, like above, one samples a random graph with the same sizereal-world complex network then it
clustering coefficient is equal to the density. It is therefeery low. If one samples a random graph with
the same number of nodesid the very same degree distributidthen the clustering coefficient still is
significantly smaller [43] than in real-world cases. Thesttwing coefficient therefore captures a property
of networks which is not a trivial consequence of the degiistilution.

Finally, the vast majority of large real-world complex netks have a very low density, small average
distance and diameter, a highly heterogeneous degre#udigin and a high clustering coefficient. These
two last properties make them different from random grapghthe same size (both purely random and
random with prescribed degree distributions). As we wiél seSection I, this is also true for the network
we consider here. More subtle properties may be studiedutiit now no other one appeared to be a
general feature of most real-world complex networks. Thaperties described here therefore serve as a
basis for the analysis of real-world complex networks, veéitiditional properties used to describe special
cases of interest.

Context

Many real-world complex networks have been studied usirmgpioperties described above. Let us
cite for instance file sharing [32], [23], [31], [50], [26]2%], company boards [46], [14], [6], [42],
sport teams [10], [44], movie actors [53], [42], human séxetations [20], [34], attendance to political
events [22], financial networks [13], [15], [24], [54], reamandation networks [45], theatre perfor-
mances [2], [49], politic ativism [11], and scientific authng [47], [39], [41].

Since, as explained above, some of their properties appéder very general, much effort has been done
in searching for underlying principles to explain them. Thest famous one probably is the preferential
attachement principle [5]. Nodes arrive one by one and akedl with pre-existing nodes with a probability
proportional to their degree. The idea is that individualsdt to link themselves to popular persons, thus
increasing their popularity. This induces power law degtisgéribution, and this principle is nowadays the
most widely accepted explanation for this property. Othtamapts have been done for various properties,
see for instance [40], [17], [27].

When one turns to more precise properties, like the exacedatjstribution, the clustering coefficient,
or more subtle properties, it is however difficult to expléiem as consequences of simple principles.
One then often refers to complex notions related to the seosaof the links and nodes, to possible
behaviors of individuals (like the fact that they tend torawluce each other to their friends or more
complex principles), etc. These assumptions are diffiaulvdlidate (measuring them is a challenge in
itself), which makes it hard to evaluate these efforts ardr tresults.

SWe consider here graphs chosen uniformly at random in the set ofagihg having the prescribed properties, using typically thédrd
and Renyi or the configurationmodels [19], [9], [8], [37], [38].



We use here quite a different approach. We try to explain theekved properties of the network we
consider (both simple and more subtle ones) as consequehitesnulti-level nature: it is constructed by
merging many small networks derived from the threads. Tisesa&ll networks, and the merging process
itself, have their own properties, which may be respondiimanany properties of the global network. In
other words, we seegtructural as opposed to semantic, explanations of these properties.

Interestingly, one may have a different view regarding aumtgbution. One may notice that semantic
features actually are encoded in the multi-layer constrnaif the network. For instance, one may imagine
that the topic of the exchanges in the mailing lists and thte@uwehaviors are somewhat encoded in the
thread structure and in the construction process. Thisrtaioby true, and our contribution may therefore
also be viewed as a way to investigate how much of these saraspects is encoded in the thread
structure and their combination.

Methodology.

As sketched above, the main methodology developped in rg@ans for the analysis of real-world
complex networks relies on the definition of properties desty these networks and on comparison of
real-world networks with random graphs. The underlyingaidg®that a property makes sense if itnist
typical of all networks having the other propertiess. networks choosen uniformly at random among
these networks.

According to this approach, for instance, the low averaggadce met in practice is not a significant
property, as it also is a property of any network with a reabte amount of randomness, including
random networks and random networks with prescribed dedistgbution. Instead, the heterogeneous
degree distribution is significant since it is in sharp castiwith what is met in random networks. If one
takes a random network among the ones having this degraéudigin, then the clustering coefficient
remains low, which leads to the conclusion that this prgpalso is significant: it is not present in most
networks, and is not a trivial consequence of the degreeliition. One can push further this approach
with any property of a network, and with any model aimed att@apg some of these properties. The
properties met in practice which are not fitted by modelsakaeeal-world feature which is not captured
by the model, and so it is significant.

We will use this methodology in this paper. We will compare tibjects under study to comparable
random structures, and we will propose simple models toucaghe observed properties. We will focus
on the way the network we consider is constructed, and we miithic this construction process from
random structures in order to see if the properties of thaionet network are comparable to the ones of
the original network. If this is the case, we will concludattthese properties may be seen as consequences
of properties of the construction process. We will seek hwthperties which fit in this framework and
properties which do not, in order to make the difference betwsomewhat trivial properties and properties
which need more investigation.

Notice finally that the random structures may be formallydsd. This however often is very hard
and leads to approximate results which may not fit the reabty well. Instead, one may generate many
random objects in the considered class and then take thagevéehavior. This is what we will do here.

The data.

Our contribution, despite it can be seen as very generagsreh the use of a real-world usage trace.
It is a set of messages posted on ihebian mailing-list, the archives of which being available online
[16]. The selected data corresponds to exchanges procdased one year, from august 2003 to august
2004, on the French mailing-list.

The data containg5 941 messages posted froer287 different e-mail addresses, corresponding @1
threads. We will consider that each e-mail address correlspexactly to one individual, which is not
true in practice (both indviduals may have several addsessed an address may be used by several
individuals). This however has little influence, if any, dretresults we derive here.



Let us insist on the fact that this dataset is considered &el@n example of the kind of data to which
our approach may be applied. In particular, we consider repgsesentative of exchanges in a mailing-list,
despite its particular nature (the fact that it is a newgratgptechnical content, etc) may have an impact
on its properties. Indeed, we will focus on very general props of exchanges in mailing-lists, and we
will not derive results on particular aspects of this dat&a Wil discuss this further in Section VI.

[I. THE INTERACTION NETWORK.

The central object in this paper is the interaction netwatneen authors of the e-mails in the database
described above. Some of these e-mail are answers to o#iretshis induces a relation between them,
which can be transposed to authors: if there is in the dataraaileauthored by which is an answer to
an e-mail authored by, then we say that answered ta.

We then model the interaction network as the grépk- (V, E') whereV is the set of all the authors
(identified by an e-mail address as explained above) andenfer) € E means thau answered ta,
or v answered tau.

In this paper, we consider as undirected: no distinction will be made betwdenv) and (v, ). In
other words(u,v) € E implies thatu answered ta, or v answered ta:, or both. We also remove loops,
i.e. links of the form(v,v). These simplifications induce some loss of information big not crucial in
our context where we want to study global statistics on thevork. Instead, it helps much in simplifying
the involved notions since most studies until now considenedirected loop-free networks (and so the
properties are defined on such graphs).

Likewise, one may consider a weighted graph by adding on édicacted or not) link(u,v) the
number of times: answered ta in the dataset. Again, this would encode much more infoionatihan
the unweighted graph we consider, but it would make its amalgnuch more intricate. Moreover, there
in no need of this additional information for our purpose. Wi discuss this further in Section VI.

We can now observe the various properties of this network. mbst basic ones are shown in Table I.
The degree distribution and degree correlations are givéiigure 1. The clustering coefficient distribution
and its correlations with degrees are given in Figure 2. Tikgilution of connected component sizes and
the distribution of distances between pairs of nodes arengiv Figure 3. The distribution of centrality is
very similar to the one of distances between pairs theref@eo not present it here. Instead, we display
in Figure 4 the correlations of both degree and clusterir) Wie centrality. In all the relevant cases, we
also give the values and display the plots obtained for randmphs with the same size and for random
graphs with the same size and the same degree distribution.

nb nodes nb links | avg degree density| component avg distance diameter| clustering
n m k ) n d i D cc
original 2287 9592 8.39 0.0037 1743 2.97 8 0.33
purely random - - - - 2285 3.87 7 0.0042
random with degree - - - - 1751 2.90 7 0.29

Table I. Basic statistics for the interaction network.

The first point here is to observe that our network has all topgrties typical of real-world complex
networks. Its average degree is low compared to its numbeodés, thus its density is very small. Its
degree distribution is very heterogeneous, with more tha¥% of nodes having less thah links (536
have no link at all), but some nodes with degree arodd@ This means that some authors received
no answer (the ones with degrég while others interacted with a significant portion of alethuthors.
The clustering coefficient itself is large compared to thesity: two nodes are linked together with a
probability approximatelyi00 times higher if they have a neighbor in common than if they dresen
at random. The network has a giant connected component ahdtb@verage distance and its diameter
are quite small, as expected.

Going further, we may observe that the average degree ofeiglnors of a node is significantly related
to its own degree. Small degree nodes tend to be connecteghtalégree ones, and conversely. Likewise,
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Fig. 1. Left: the degree distribution of the original interaction network, fittgch power law of exponent = 1.3, and the one of a typical
random graph of same size. Right: the degree correlatianshe average degree of neighbors of nodes of degeesea function ofi, for

both the original interaction network, for a typical random graph of saixes and for a typical random graph with the same size and degree
distribution.
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Fig. 2. Left: the clustering coefficient distribution. Right: the correlatiossveen clustering coefficient and degree,the average clustering
coefficient of nodes of degregeas a function ofc. Each plot is given for both the original interaction network, for a typreaidom graph
of same size, and for a typical random graph with the same size andeddigtribution.

small degree nodes tend to have a high clustering while hagjned ones have a smaller clustering. The
network has many nodes of degreewhich induces the same number of connected componentzef si
1. It also hasl components reduced to only one link, and all the other nodegahe giant component.
It may therefore be viewed as connected, once the nodes otaeédrave been removed. In the giant
component, the distances are well centered on an averagg wally a few pairs of nodes are at a distance
which varies significantly from the average, and even indglesses the difference remains small. Finally,
it appears clearly in Figure 4 that nodes with high degrearares centralin terms of distance than nodes
with low degree. On the countrary, there is no obvious retabetween clustering and centrality.

Let us insist on the fact that our purpose her@as to interpret these results: our aim in this section
was to identify some non-trivial properties of the networidar concern, in order to explore in the next
sections how the way it is constructed may be seen as regporisi these properties.

It appears clearly that the interaction network is veryatd#t from a random graph with the same size:
the degree distribution is heterogeneous, the clusteradficient is several orders of magnitude larger
than in a random graph, and actually all the other propedrespoorly fitted by random graphs, see the
figures. Notice that the fact that there are very few nodeseo§ Yow degree in purely random graphs
implies that it is almost connected (the giant componenin®at the whole graph). If we first remove all
the nodes of degre@ or if we restrict ourselves to the giant component of theinabnetwork, however,
the results are similar: the original interaction netwalar from a random graph of the same size.

If we compare it to a random network with the same size andegedistribution, the difference is
not so huge. First, of course, the degree distribution issdme, which implies that there is the same



3e+06— -

2.5e+061 B

1.5e+06 B

500000~

B * =+
10 X ! ! X - of | ! ! ! I [ [

I
1 10 100 1000 100C 0 1 2 3 4 5 6 7
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Fig. 4. Left: the correlations between centrality and degreefor all i the average distance of nodes of degide all others. Right:
the correlations between centrality and clustering, for all 14; the average distance of nodes of clustering betwegk? and 5> to
all others. Each plot is given for both the original interaction network,afdypical random graph of same size, and for a typical random

graph with the same size and degree distribution.

amount of nodes of degre® almost all the others being in the giant component. Theeethe size
of the giant component and the distribution of the connecadponent sizes are well fitted. Likewise,
the degree correlations and the distance distribution arg well fitted, which means that they may be
seen as consequences of the size and the degree distribLhieriit for correlations between degree and
centrality is also quite good.

Though the difference is not huge, the fit is not as good if weeole properties related to clustering.
First, the average clustering is significantly lower in ramdgraphs with the same size and degree
distribution than in the original network. As can be obsdrwe Figure 2, the clustering distributions
have the same shape but the original one is shifted towaeldatigest values. The correlations with
degree show that this is due to the fact that nodes of low éefireparticular the ones with very low
degree) tend to have a very high clustering in the origindvaek: almost50 % of nodes of degreé@
actually form a triangle with their two neighbors (while grdne third do in the corresponding random
graph).

Finally, we obtain quite a precise description of the intdan network we consider (though many
other properties may be observed), and we give evidenceedhti that is is very different from a typical
random graph with the same size. The fit with a random graph thé same size and degree distribution
is much better, but not perfect. Moreover, obtaining propsras a consequence of global statistics like
the degree distribution is not satisfactory since it bringsufficient explaination of theausesof these
properties. Moreover, as we will discuss in Section VI, thgproach can hardly be extended to more
subtle properties. This is why we propose another approanbBdaat capturing the original properties



more precisely, at giving some explainations for these gnigs, and which may be extended to more
complex properties.

[11. THE MULTI-LEVEL FORMALISM.

The raw data is nothing but a set of messages, which we wibteelny //. Each message: is labelled
with an authora(m). Moreover,,m may be an answer to another messageWe then calim’ the father
of m and we denote it byn’ = f(m). If m has no father defined this way (it is not an answer to any
other message) then we put as a convention fat) = m.

This leads to the following set of definitions. Theot »(m) of a messagen is eitherm itself if
f(m) = m, or else it is the root off (m). Notice that not all message is the root of any message, but
only the ones which are not answers to any other messagen @ieenature of our data, we call these
messages thmots or queries(they generally correspond to queries posted by users omé#iéng-list)
and denote their set by C M.

We may now define théhreadto which a message: belongs as

t(m) = {m' such that(m') = r(m)}

A threadt then is a set of messages such that all messages in the sehéaane root and no other does.
We will denote the set of threads Wy. Notice that a thread always contains exactly one root, which
we denote by (), and each root defines exactly one thread). Therefore there is a trivial bijection
between the set of threads, the set of roots and the set akegu®Ye will use these terms equivalently,
depending on the context.

A thread has a tree structure with respectftowhich leads to the following definitions. First notice
that the root of a threadis nothing but the root of the corresponding tree. Then wenddhe depth of a
message as its distance to its rodepth{m) is 0 if m is a root, andl + deptH{f(m)) else. The height of
a threadt is the maximal depth over all its messagksigh(t) = maxz{deptim), m € t}. The degree
d°(m) of a messagen is the number of messages # m such thatf(m’) = m.

Considering now the author point of view, we define ttemtribution of an authorz as the number
of messages he authoredlx) = [{m € M, a(m) = z}|. Likewise, thedispersionof an authorz is the
number of threads to which he/she contributéd:) = |{t € 7, Im € t, a(m) = z}|. Conversely, the
numbera(t) of authors in a thread is a(t) = [{a(m), m € t}|.

The first level at which we will consider the data is this one= 8ee the data as a set of threads,
themselves viewed as trees.

The second level at which we will consider the data is obthifrem the first one by adding the
authoring information: each thread is a labelled tree.

Finally, the third level is the one of the interaction netioalready defined and studied in Section Il.
It can be defined using the formalism above as follows= (V, E) whereV = {a(m), m € M} is the
set of authors, and&' = {(u,v), u=a(m) €V, v=a(m’) €V, m#m/, m = f(m') orm’ = f(m)}
is the set of links such that two authors are linked if one eithanswered to a message posted by the
other. Notice that this graph may be obtained from the thteael structures by merging all the nodes
having the same author.

The three levels are illustrated in Figure 5. It must be ctbat the data may be considered at several
other levels, and could be observed using a variety of mo#&elsinstance, one may consider the threads
as graphs among authors. One may also include the directecerdd links, or time information (the date
at which each message appeared), which is available. Adletliermalisms may be relevant depending
on the aim of each study. We focus here on the three levelsedkfibove, which are sufficient for our
purpose.

IV. THE THREADS.

In this section we present basic statistics and models #rdiita at thread level. We will therefore
consider sets of trees which we describe using statisiixd$ t and we compare the values obtained for
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Fig. 5. The three levels at which we will consider our data. From left totrigie threads (trees), the labelled threads, and the interaction
network. Notice that we removed the loops (herg,f)) and that we do not consider multiple links (for instance herg)).

aef

the original data to the ones obtained for the models.

The first model is the purely random one: we consider the sam#ar of messages as in the original
data, we choose randomly as many roots as in the original datbeach message is linked to a randomly
chosen father. We repeat this until there is no cycle, andetbee we obtain a set of trees chosen at
random among the ones having the same number of messagesasdWe will call this therandom
model for threads.

The other model we will consider only adds the degree constrae draw the degree of each message
according to the original degree distribution and then weosk for each message a father which still
has not as many sons as its degree. Again, we repeat thigher® is no cycle, and therefore we obtain
a set of trees chosen at random among the ones having the sanbemof messages and roots, and the
same degree distribution as the original one. We call thidehthedegreemodel.

As we will see, this model is sufficient to capture the basapprties we will consider here. Moreover,
it is important for us to consider only very simple modelsponder to focus on the multi-level nature of
the data. We will therefore not consider more subtle models.

aaaaaaaaaaaaaaaaaaaaaa
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Fig. 6. From left to right: the degree distribution of messages in threaes; dbpth distribution; the correlations between their depth and
degree. Each plot is given for the original data and lratidomand degreemodels.
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Fig. 7. From left to right: the distribution of thread sizes (number of ngssa the distribution of their heights; and the correlations
between bothi(e. the average size of threads of heighfor all 7). Each plot is given for the original data and bo#tndomand degree
models.

We can now observe the statistics obtained for real-world,d@gether with the statistics obtained
for the two models. Let us begin with some properties of thesages, namely their degree distribution,
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their depth distribution, and the correlations betweeséh®vo properties, see Figure 6. One can observe
on these plots that the properties are quite heterogenewlthat there is no clear correlations between
them. For instance, almo$0 000 messages recieved only one answer, while some recievedtharé0.
There is however no message with a huge number of answershwhnot surprising. Similar remarks
hold for depths.

If we turn to properties of threads themselves, the hetergityeis more pronounced, see Figure 7: most
threads contain only a few messages, but one of them contaons than200 messages. It is however a
very special case, and here again the heterogeneity is get s one may expect, there is a correlation
between thread height and size.

We observed various other statistics (including the cati@hs between the ones plotted here) and all
the results are similar. We finally conclude that tegjreemodel preforms better than ti@ahdomone but
the difference is not huge (which is due to a quite low hetenegty), and the fit is good but not perfect.

It must however be clear that these models miss importargepties of the threads, like for instance
the presence of large filiform structurés. series of messages,, m., ..., m; such thatn; = f(m;_1))
andd’(m;) = 1 for all 0 < < [. Capturing such properties can be done quite easily, butatuisf the
scope of this paper, see Section VI.

V. AUTHORS IN THREADS

The thread models proposed in the previous section are ffatisat for our purpose. Indeed, in order
to be able to construct an artificial interaction networkwestn authors from a set of artificial threads,
we need to associate an author to each message. This is thef #ims section.

Again, we will observe basic properties of this associaiimur real-world data, and try to capture
them in very simple models. Let us suppose that a set of mesddgs given and that there is a thread
structure on this set defined by the functigfvn) which, for eachm € M gives its father. We also
suppose that a set of authors is given. We want to define models which producetfans from M to
A giving an authom(m) to each message.

Again, the first model we will consider is purely random: thehemr of each message i is chosen
uniformly at random inA. We will call this therandommodel for authors.

The other model we will consider relies on the distributidraothor contributions. We suppose that this
distribution is given, then we sample the contributign) of each author according to this distribution,
and we choose at randonta) messagesn € M for which we puta(m) = a. We will call this the
contribution model.

Let us notice that we may use artificial threads obtained @vipus section to evaluate our models of
author labelling. However, this would imply that the perfances we observe in this section could be
biased by the models in the previous section. We will theeefese here the original threads, and simply
replace the original authors with authors chosen with theletso This makes it possible to evaluate the
properties of the two kinds of models separately.

aaaaaaaaaaaaaaaaaa
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Fig. 8. From left to right: the contribution distribution; the dispersion distrilytibe distribution of the number of roots labelled by the
same author. Each plot is given for the original data and baidlomand contributionlabelling models, on the original threads.
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Fig. 9. From left to right: the size (in terms of authors) distribution of thse@drrelations between thread sizes in terms of messages and
in terms of authors; the number of roots of threads authored by edahbraas a function of the total number of threads he/she authored
(for each author we draw a point with coordinates given by these twpepties). Each plot is given for the original data and b@hdom

and contribution labelling models, on the original threads.

Let us first observe in Figure 8 the contribution and the di&pa distributions. The shapes of the
plots for the original data are unusual: they begin with aypoimial decay but the tail of the distribution
in unstructured. This means that authors may be separatedwo sets: the ones which have a quite
low contribution, the number of which decays polynomiallythwthe contribution, and the ones with
high contribution, between which there is no differenceother words, the number of authors having
a given contribution is independent of this contributionenht is large enough. The same observations
hold for dispersion. Notice that the polynomial decay is captured by theandommodel, but that the
tail is well fitted which indicates that it is due to the st of threads rather than the labelling model.
The contribution model takes the contribution distribution as a parametatr,itbalso fits the dispersion
distribution very well. This is also true for the number obte labelled by each author. We do not enter
in more details here since our aim is not to give interpretetiof the observed properties.

If we turn to more complex properties, like the ones in Figlrehe fit is not so good but it remains
reasonable. This shows that, as long as we are concernedasib properties of authors in threads, the
contribution model is sufficient. It must be clear however that it missamesamportant features of the
original data. For instance, in the original data, if a mgsesa authored by, then many other messages
in the thread(a) containinga will also be authored by with high probability. These properties may be
included in author models, but this is out of the scope of gaper. Our purpose here is not to model
the original data as precisely as possible, but to captureeswntrivial properties which may play a role
in the properties of the interaction network. We will thenef not deepen more the modeling of message
labels.

VI. RESULTS AND DISCUSSION

In Section II, we described the main properties of the irtgoa network, up to a quite high level of
detail. In Section Ill, we proposed a formalism which makesatural to observe the object under concern
at three different levels: the thread level, the labelle@dd level, and the interaction network itself. We
studied basic properties of the two first levels in Sectionsahd V, and we proposed simple models to
capture them.

We can now address the central question of this paper: caprdperties of the interaction network
be seen as consequences of properties at the two other?duetsder to answer this question, we will
generate articifial networks using the models proposed Herfirst levels and compare them with the
original network. We obtain seven artificial networks, pthe classical comparison with purely random
graphs and with random graphs with the same degree distnibatready considered in Section Il.

We therefore produce here the same statistics as in Sedtion the seven new relevant cases. See
Table Il and Figures 10 to 17.

There are several important points to notice. First, it appelearly that the model used for the threads
has little influence on these results. This is a consequdrte dact that, at least concerning the properties
under concern, the properties of threads are quite closa famdom as seen in Section IV. On the
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THREADS
random degree original
m | k| 9 m k B m k 5
9 random 19111\ 16.71 \ 0.0073 19129\ 16.73 \ 0.0073 19119 | 16.72 | 0.0073
' contribution 14415\ 12.61 \ 0.0055 14450\ 12.64 \ 0.0055 14420 | 12.61 | 0.0055
< original - - 9592 | 8.39 | 0.0037
THREADS
random degree original
d D d \ D d D
9 random 3.01 | 5 3.01 \ 5 3.01 | 5
m contributon| 289 | 7 288 | 7 287 | 6
S original - - 297 | 8
THREADS
random degree original
n cc n | cc n cc
“  random 2287 0.0082 2286 0.0082 2287 0.0086
L contribution 2149 0.32 2178 0.33 2192 0.33
< original - — 1743 0.33
Table Il. Properties of the artificial interaction networks. From top to battiha basic statistics; the average distance and the diameter;

the size of the giant component and the clustering coefficient.
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Fig. 10. Degree distributions in the artificial interaction networks. See Eiguand its caption.
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Fig. 11. Degree correlations in the artificial interaction networks. Seer€igjand its caption.
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countrary, the model used for author labellings has a stiofigence, and theontribution model gives



14

T 200

180~
500~ -
160~ -

140~ B

120~ -

200~ -

100~ + -

% - + 201~
i by ey b &

o " P SR e et P e 0 * X X
0.01 01 1 001

Fig. 12. Clustering distributions in the artificial interaction networks. SeerEig@uand its caption.
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Fig. 13. Correlations between degree and clustering in the artificial iti@magetworks. See Figure 2 and its caption.
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Fig. 14. Distribution of connected component size in the artificial interastitworks. See Figure 3 and its caption.

very good results. The artificial interaction networks aietd with the contribution model for authors
and thedegreeone for threads gives better performance than the onesnebitan Section Il. The only
properties on which they perform poorly is the size of thengieomponent and the degree correlations;
this is due to the fact that the artificial networks are alnme@sinected, which is in turn due to the fact
that they do not capture the presence of threads ofisizénis can be easily added in the models, or one
may study these special threads separately.

Finally, it appears from these statistics that, despiternadels are very basic (and, as we have seen,
they miss important properties of the original data), they sufficient to capture most simple properties
of the original interaction network. In particular, they dignificantly better than random graphs with the
same size, and random graphs with the same size and degnéleuticn.

We will not go further in the analysis of the results sincestisi sufficient for our purpose. But we want
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Fig. 16. Correlations between degrees and centrality in the artificial iti@macetworks. See Figure 4 and its caption.
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Fig. 17. Correlations between clustering and centrality in the artificial inieracetworks. See Figure 4 and its caption.

to insist on one point which seems particularily importamtus. It must be clear that the fact that the
properties of our artificial networks are similar to the ooéshe original network is a non-trivial result:
these properties were not encoded explicitely in the moaeétsch rely only on very basic properties of
threads and authors. Showing that the properties of threads little influence while the frequency of
occurences of authors are central also is a non-triviallteEne multi-level formalism makes it possible
to derive such results, which improve significantly our ustending of the underlying object, whereas
random graph models can only be used to mimic the properfidsecobject.

Going further, we beleive that a multi-level approach womnldke it possible to capture much more
subtle properties than the ones discussed here. For iestdrecredundancy of authors inside each thread
may induce clusters in the interaction network; the preseridiliform structures may induce large cycles;
etc. More importantly, if one wants to capture the directad/ar weighted nature of the data, then the
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multi-level approach seems very well suited whereas rangmph approaches are of limited help.

CONCLUSION AND PERSPECTIVES

In this contribution we studied an interaction network betw authors induced by exchanges in
a mailing-list. We proposed a three-level formalism to diésc and study this data. This formalism
emphasizes the fact that the final network is constructead smaller, simplier substructures (the threads
and the labelled threads). It makes it possible to invetgitgze influence of the properties of these small
structures, and of this construction process, on the ptiegenf the overall network.

We observed simple properties of the threads and of thegrlllabs. We captured them in some
basic models, either totally random or focusing one padicproperty. We then compared the artificial
interaction networks obtained by combining these modelthéooriginal ones, and to random ones. It
appears clearly that some non-trivial properties of thegioal network, missed by the usual random
models, are captured by the multi-level approach.

Our aim here is not to say that the models we propose are reelava capture some real-world feature.
But we give evidence of the relevance of such an approach toreggxplain and model subtle properties
of complex networks, which would be very hard with the cleskapproach.

We are convinced that this result is very general. Many netsvare actually induced by a construction
process which can be simply described (and which oftengae the merging of small substructures).
Let us cite for instance co-authoring networks, in whichhaus are linked together if they signed a paper
together: each paper induces a clique, which may be seenspsnsgble for the high clustering [28],
[42], and the overall structure of the network is induced oy Wway these cliques overlap. Modeling such
networks by first capturing the redundency between co-aumtpoelations would certainly make sense.
The actor network and co-occurrence networks are also sncse. Going further, many social networks
may be seen as the union of ego-centered networks; modéksg small networks and the way they are
combined to form the global network is a natural perspeativeur work.

Following these remarks, there are at least two clear dmeaeh which our work should be continued.
One the one hand, one could certainly use this approach anthdidels we proposed (or similar ones)
to give social interpretations of the observed propertiedeed, even if we did not discuss this here, the
models actually rely on simple social assumptions which Wwewscan be seen as responsible for the
properties of the whole network. Analysing this from a sbsi@ence point of view remains to be done.
On the other hand, this approach has the important advawofagdying on very simple models, which
makes it possible t@rove their properties, and their influence on the whole. An amalgtudy is then
possible and would lead to a tightening of theoretical aratfral questions.

One may also improve this work by proposing better modelgterdifferent levels, or even another
multi-level modeling. As already noticed, it is indeed pbksto see the data at a wide variety of levels.
Some may be relevant depending on the objectives. Likewnssy other statistics could be considered
and lead to new insight. As already discussed in Sectiomhié could also view the network as directed,
weighted, and also as evolving during time. There is culyesmt important lack of methods and tools
to tackle the complexity induced by this richer informatidnut it makes no doubt that it would improve
significantly our understanding of the underlying objeatsl ahenomena. As already pointed out, the
multi-level formalism has important advantages to tachie.t
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