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Multi-level analysis of an interaction network
between individuals in a mailing-list

Rémi Dorat1,2,3 Matthieu Latapy1 Bernard Conein2 Nicolas Auray3

Abstract
It is well known now that most real-world complex networks have some properties
which make them very different from random networks. In the case of interactions
between authors of messages in a mailing-list, however, a multi-level structure may
be responsible for some of these properties. We propose herea rigorous but simple
formalism to investigate this question, and we apply it to anarchive of the Debian user
mailing-list. This leads to the identification of some properties which may indeed be
explained this way, and of some properties which need deeperanalysis.

INTRODUCTION.

It makes no doubt that understanding how individuals interact in a social framework is a key issue for
sociology and in many other contexts like economy, management, anthropology, etc. Collecting large-scale
data on such interactions was however a challenging, almostimpossible, task until recently. The birth and
development of computation and communication capabilities (in particular the internet) opened unleashing
opportunities for the study of interactions between individuals. Indeed, it is easy in a digital framework
(as opposed toreal world) to collect large amounts of traces of such interactions. This can be done for
instance on instant messaging applications [35], at e-maillevel [18], at web or blog levels [12], [1], in
peer-to-peer systems [23], [31], [26], [25], and many others. The references cited here are only a few
examples of the huge amount of studies conducted recently inthis area, and made possible by this new
situation. See [3], [43], [48], [17] for surveys of the field.

It must however be clear that the data collected this way are incomplete and often imprecise. It may be
significantly biased by the measurement process, see for instance [29], [30]. Even more importantly, the
behaviors of individuals themselves may be influenced by thecommunication medium, see for instance
[7], [51]. These aspects must be taken into account in any rigorous study of individual interactions in a
numerical framework.

Our contribution lies in this context. It focuses on the interaction network induced by exchanges between
authors in a mailing-list. This network may be viewed as the fusion of several pieces of interactions
centered on a given topic, captured by the notion of thread inthe mailing-list context. One may then
wonder if, and how, properties of the interaction network may be induced by this underlying structure.
The aim of this paper is to answer this question.

Before entering in the core of the paper, we need some preliminaries (on the notions under study,
the context and methodology, Section I). We will then present results on the analysis of the network we
consider (Section II), and the multi-level formalism we propose for it (Section III). We then present results
on the two indermediate levels (Sections IV and V), and we finally present and discuss our results in
Section VI.

1LIAFA – CNRS and Universit́e Paris 7 – 2, place Jussieu, 75005 Paris, France –latapy@liafa.jussieu.fr – corresponding
author
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I. PRELIMINARIES.

It appeared recently (at the end of the 90’s, [53]) that most large real-world complex networks have
several properties in common. They also have specific properties which make them different from each
other. These properties are useful to describe a given network (or a set of networks) and to obtain relevant
information from it (them). Since a few years, many such properties have been defined and many special
cases have been studied, see the surveys [3], [43], [48], [17].

Here we will observe some of these properties, starting fromthe most basic ones and going to more
subtle ones, on an interaction network between authors in a mailing-list. We introduce these properties
below. Then we describe the context in which our work lies, and the methodology we will use. Finally,
we will describe precisely the raw data on which our work relies.

The observed properties.

A network is modeled by a graphG = (V,E) whereV is the set of nodes andE ⊆ V × V is the
set of links. We will consider only undirected networks here4, which means that we make no distinction
between(u, v) ∈ E and (v, u) ∈ E. We will denote byN(v) = {(u, v) ∈ E} the neighborhoodof a
nodev, the elements ofN(v) being theneighborsof v. The number of nodes inN(v) is the degreeof
v: do(v) = |N(v)|.

The basic properties describing such a graph are itssize, i.e. its number of nodesn = |V | and its
number of linksm = |E|, its average degreek = 2m

n
, and itsdensityδ(G) = 2m

n(n−1)
, i.e. the number of

existing links divided by the number of possible links. In other words,δ(G) is the probability that two
(distinct) randomly chosen nodes are linked together.

Going further, one may define thedistanced(u, v) between two nodesu and v in the graph as the
length of a shortest path betweenu andv, i.e. the minimal number of links one has to use to go from one
node to the other. Theaverage distanceof the graph,d(G), is nothing but the average of the distances
for all pairs of nodes:d(G) = 1

n2

∑
u,v∈V d(u, v). ThediameterD of the the graph is the largest distance

between any two pairs:D = maxu,v∈V (d(u, v)).

Notice that it is possible (and in general it is true) that there are some nodes between which no path
exists in the graph. To capture this, one may define theconnected componentsof the graph as the largest
sets of nodes such that there exists a path between any two elements of a same set. If there is only one
such set, then the graph is said to beconnected. If there are several ones, then one of them is generally
much larger than the others; in such cases it is called thegiant componentand its size is denoted byn.

If the graph is not connected, then there exists pairs of nodes for which the notion of distance is
undefined; one then usually only considers the giant component, if it exists. We will follow this convention
in this paper. Therefore, we consider that the notions of distance defined above only concern the giant
component (we will see that the networks we will encounter all have a giant component).

The next property is not this classical. It is thedegree distribution, i.e. for all integeri the number of
nodes of degreei. One may also observe the correlations between degrees, defined as the average degree
of the neighbors of nodes of degreei, for each integeri. Other notions concerning degrees have been
studied, like assortativity, but we do not use them here.

Another important kind of statistics aims at capturing a notion of local density: it measures the
probability that two nodes are linked together, provided they have a neighbor in common. In other words,
it is the probability that any two neighbors of any node are linked together. This is measured using the
clustering coefficientof a nodev:

cc(v) =
|EN(v)|

|N(v)|(|N(v)|−1)
2

=
2|EN(v)|

do(v)(do(v) − 1)

4We will discuss this choice later in the paper.
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whereEN(v) = E ∩ (N(v) × N(v)) is the set of links between neighbors ofv. In other words,cc(v) is
the probability that any two neighbors ofv are linked together. Notice that it is nothing but the density of
the neighborhood ofv, and in this sense it captures the local density. It is undefined for nodes of degree
lower than2.

The clustering coefficient of the graph itself then is the average of this value for all the nodes on which
it makes sense:cc(G) = 1

|{v, do(v)>1}|

∑
v∈V, do(v)>1 cc(v). Other notions of clustering coefficients have

been defined to capture local density but this one is sufficient for our purpose.

The distance may also be used to define a notion ofcentrality of nodes [52]. Let us denote byd(v) the
average distance ofv to any node in the graph:d(v) = 1

n

∑
u∈V d(v, u). Then one may consider thatv is

morecentral thanu whend(v) is smaller thand(u). Other notions of centrality (like the degree itself or
the betweenness centralty[52]) are often used, but they are out of the scope of this paper.

All these notions naturally lead to the observation of theirdistributions and of their possible correlations,
which we detail now.

The distribution of an integer valued property is, for all integeri the number of instances (nodes or pairs
of nodes in our context) for which this property has valuei. For instance, the degree distribution is the
number of nodes having degreei, for all i. If the property is real-valued (like the clustering for instance),
we take for all integeri the number of instances for which the property has a value between i−0.5

100
and

i+0.5
100

and we plot it as a function ofi
100

. Distributions make it possible to observe the representativity of
the average value, and to identify non-typical cases.

Correlations between a propertyP and another propertyP ′ are usually captured by plotting the average
value of propertyP ′ for nodes for which propertyP has valuei, for all i. For instance, the degree-degree
correlations are studied by plotting, for eachi, the average degree of neighbors of nodes of degreei.
The degree-clustering (resp. degree-centrality) correlations are studied by plotting the average clustering
coefficient (resp. centrality) of nodes of degreei as a function ofi. The clustering-centrality correlations
are studied by plotting the average centrality of nodes of clustering betweeni−0.5

100
and i+0.5

100
as a function

of i
100

. These plots make it easy to observe how a property tends to berelated to another one, for instance
if highest degree nodes tend to be linked to highest degree nodes or not, if they tend to have a high
clustering or not, and/or if they tend to have a high centrality or not.

One may of course consider many other statistics to describecomplex networks. We will focus here on
the statistics described above, which play a central role incomplex network studies and already provide
a powerful toolkit for their analysis.

Typical complex networks.

It appeared recently [53] that most large real-world complex networks have several non-trivial properties
in common. First notice that, since we are concerned here with large networks,n must be large. In most
real-world cases, is appeared thatm is of the same order of magnitude asn, i.e. the average degree is
small compared ton. Therefore, the density generally is very small:δ(G) ∼ 2kn

n(n−1)
∼ 1

n
, which is close

to 0 sincen is large.
It is now a well known fact that the average distance and the diameter in real-world complex networks

are in general very small (small-world effect), even in very large ones, see for instance [36], [53]. This
is actually true in most graphs, since a small amount of randomness is sufficient to ensure this, see for
instance [53], [33], [19], [9], [42]. This property, despite it may have important consequences and should
be taken into account, therefore should not be considered asa significant property of a given network.
We will discuss this in the methodology part below.

Another point which recieved recently much attention, see for instance [21], [5], [4], is the fact that the
degree distribution of most real-world complex networks ishighly heterogeneous, often well fitted by a
power law:pk ∼ k−α for an exponentα generally between1 and3.5. This means that, despite most nodes
have a (very) low degree, there exists nodes with a very high degree. This implies in general that the
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average degree is not a significant property, bringing much less information than the exponentα which
is a measurement of the heterogeneity of degrees.

If one samples a random graph with the same size (i.e. same number of nodesn and linksm) as a given
real-world one5, thus with the same density, then the obtained degree distribution is qualitatively different:
it follows a Poisson law (in which all the values are close to the average). This means that the heterogeneous
degree distribution is not a trivial property, in the sense that it makes real-world complex networks very
different from most graphs (of which random graphs are representative). The degree correlations and
other properties on degrees, on the countrary, behave differently depending on the complex network under
concern.

Going further, the clustering coefficient is quite large in most real-world complex networks: despite
most pairs of nodes are not linked together (the density is very low), if two nodes have a neighbor in
common then they are linked together with probability significantly higher than0 (the local density if
high). However, the clustering coefficient distributions,their correlation with degrees, and other properties
related to clustering, behave differently depending on thecomplex network under concern.

If, like above, one samples a random graph with the same size as a real-world complex network then it
clustering coefficient is equal to the density. It is therefore very low. If one samples a random graph with
the same number of nodesand the very same degree distribution5 then the clustering coefficient still is
significantly smaller [43] than in real-world cases. The clustering coefficient therefore captures a property
of networks which is not a trivial consequence of the degree distribution.

Finally, the vast majority of large real-world complex networks have a very low density, small average
distance and diameter, a highly heterogeneous degree distribution and a high clustering coefficient. These
two last properties make them different from random graphs of the same size (both purely random and
random with prescribed degree distributions). As we will see in Section II, this is also true for the network
we consider here. More subtle properties may be studied, butuntil now no other one appeared to be a
general feature of most real-world complex networks. The properties described here therefore serve as a
basis for the analysis of real-world complex networks, withadditional properties used to describe special
cases of interest.

Context

Many real-world complex networks have been studied using the properties described above. Let us
cite for instance file sharing [32], [23], [31], [50], [26], [25], company boards [46], [14], [6], [42],
sport teams [10], [44], movie actors [53], [42], human sexual relations [20], [34], attendance to political
events [22], financial networks [13], [15], [24], [54], recommandation networks [45], theatre perfor-
mances [2], [49], politic ativism [11], and scientific authoring [47], [39], [41].

Since, as explained above, some of their properties appear to be very general, much effort has been done
in searching for underlying principles to explain them. Themost famous one probably is the preferential
attachement principle [5]. Nodes arrive one by one and are linked with pre-existing nodes with a probability
proportional to their degree. The idea is that individuals tend to link themselves to popular persons, thus
increasing their popularity. This induces power law degreedistribution, and this principle is nowadays the
most widely accepted explanation for this property. Other attempts have been done for various properties,
see for instance [40], [17], [27].

When one turns to more precise properties, like the exact degree distribution, the clustering coefficient,
or more subtle properties, it is however difficult to explainthem as consequences of simple principles.
One then often refers to complex notions related to the semantics of the links and nodes, to possible
behaviors of individuals (like the fact that they tend to introduce each other to their friends or more
complex principles), etc. These assumptions are difficult to validate (measuring them is a challenge in
itself), which makes it hard to evaluate these efforts and their results.

5We consider here graphs chosen uniformly at random in the set of all graphs having the prescribed properties, using typically the Erdös
and Ŕenýı or theconfigurationmodels [19], [9], [8], [37], [38].
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We use here quite a different approach. We try to explain the observed properties of the network we
consider (both simple and more subtle ones) as consequencesof its multi-level nature: it is constructed by
merging many small networks derived from the threads. Thesesmall networks, and the merging process
itself, have their own properties, which may be responsiblefor many properties of the global network. In
other words, we seekstructural, as opposed to semantic, explanations of these properties.

Interestingly, one may have a different view regarding our contribution. One may notice that semantic
features actually are encoded in the multi-layer construction of the network. For instance, one may imagine
that the topic of the exchanges in the mailing lists and the author behaviors are somewhat encoded in the
thread structure and in the construction process. This is certainly true, and our contribution may therefore
also be viewed as a way to investigate how much of these semantic aspects is encoded in the thread
structure and their combination.

Methodology.

As sketched above, the main methodology developped in recent years for the analysis of real-world
complex networks relies on the definition of properties describing these networks and on comparison of
real-world networks with random graphs. The underlying idea is that a property makes sense if it isnot
typical of all networks having the other properties,i.e. networks choosen uniformly at random among
these networks.

According to this approach, for instance, the low average distance met in practice is not a significant
property, as it also is a property of any network with a reasonable amount of randomness, including
random networks and random networks with prescribed degreedistribution. Instead, the heterogeneous
degree distribution is significant since it is in sharp contrast with what is met in random networks. If one
takes a random network among the ones having this degree distribution, then the clustering coefficient
remains low, which leads to the conclusion that this property also is significant: it is not present in most
networks, and is not a trivial consequence of the degree distribution. One can push further this approach
with any property of a network, and with any model aimed at capturing some of these properties. The
properties met in practice which are not fitted by models reveal a real-world feature which is not captured
by the model, and so it is significant.

We will use this methodology in this paper. We will compare the objects under study to comparable
random structures, and we will propose simple models to capture the observed properties. We will focus
on the way the network we consider is constructed, and we willmimic this construction process from
random structures in order to see if the properties of the obtained network are comparable to the ones of
the original network. If this is the case, we will conclude that these properties may be seen as consequences
of properties of the construction process. We will seek bothproperties which fit in this framework and
properties which do not, in order to make the difference between somewhat trivial properties and properties
which need more investigation.

Notice finally that the random structures may be formally studied. This however often is very hard
and leads to approximate results which may not fit the realityvery well. Instead, one may generate many
random objects in the considered class and then take the average behavior. This is what we will do here.

The data.

Our contribution, despite it can be seen as very general, relies on the use of a real-world usage trace.
It is a set of messages posted on theDebian mailing-list, the archives of which being available online
[16]. The selected data corresponds to exchanges processedduring one year, from august 2003 to august
2004, on the French mailing-list.

The data contains25 941 messages posted from2 287 different e-mail addresses, corresponding to6 731
threads. We will consider that each e-mail address corresponds exactly to one individual, which is not
true in practice (both indviduals may have several addresses, and an address may be used by several
individuals). This however has little influence, if any, on the results we derive here.
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Let us insist on the fact that this dataset is considered hereas an example of the kind of data to which
our approach may be applied. In particular, we consider it asrepresentative of exchanges in a mailing-list,
despite its particular nature (the fact that it is a newgroup, its technical content, etc) may have an impact
on its properties. Indeed, we will focus on very general properties of exchanges in mailing-lists, and we
will not derive results on particular aspects of this data. We will discuss this further in Section VI.

II. T HE INTERACTION NETWORK.

The central object in this paper is the interaction network between authors of the e-mails in the database
described above. Some of these e-mail are answers to others,and this induces a relation between them,
which can be transposed to authors: if there is in the data an e-mail authored byu which is an answer to
an e-mail authored byv, then we say thatu answered tov.

We then model the interaction network as the graphG = (V,E) whereV is the set of all the authors
(identified by an e-mail address as explained above) and where (u, v) ∈ E means thatu answered tov,
or v answered tou.

In this paper, we considerG as undirected: no distinction will be made between(u, v) and (v, u). In
other words,(u, v) ∈ E implies thatu answered tov, or v answered tou, or both. We also remove loops,
i.e. links of the form(v, v). These simplifications induce some loss of information but it is not crucial in
our context where we want to study global statistics on the network. Instead, it helps much in simplifying
the involved notions since most studies until now considered undirected loop-free networks (and so the
properties are defined on such graphs).

Likewise, one may consider a weighted graph by adding on each(directed or not) link(u, v) the
number of timesu answered tov in the dataset. Again, this would encode much more information than
the unweighted graph we consider, but it would make its analysis much more intricate. Moreover, there
in no need of this additional information for our purpose. Wewill discuss this further in Section VI.

We can now observe the various properties of this network. The most basic ones are shown in Table I.
The degree distribution and degree correlations are given in Figure 1. The clustering coefficient distribution
and its correlations with degrees are given in Figure 2. The distribution of connected component sizes and
the distribution of distances between pairs of nodes are given in Figure 3. The distribution of centrality is
very similar to the one of distances between pairs thereforewe do not present it here. Instead, we display
in Figure 4 the correlations of both degree and clustering with the centrality. In all the relevant cases, we
also give the values and display the plots obtained for random graphs with the same size and for random
graphs with the same size and the same degree distribution.

nb nodes nb links avg degree density component avg distance diameter clustering
n m k δ n d D cc

original 2287 9592 8.39 0.0037 1743 2.97 8 0.33
purely random – – – – 2285 3.87 7 0.0042
random with degrees – – – – 1751 2.90 7 0.29

Table I. Basic statistics for the interaction network.

The first point here is to observe that our network has all the properties typical of real-world complex
networks. Its average degree is low compared to its number ofnodes, thus its density is very small. Its
degree distribution is very heterogeneous, with more than50 % of nodes having less than5 links (536
have no link at all), but some nodes with degree around400. This means that some authors received
no answer (the ones with degree0) while others interacted with a significant portion of all the authors.
The clustering coefficient itself is large compared to the density: two nodes are linked together with a
probability approximately100 times higher if they have a neighbor in common than if they arechosen
at random. The network has a giant connected component and both its average distance and its diameter
are quite small, as expected.

Going further, we may observe that the average degree of the neighbors of a node is significantly related
to its own degree. Small degree nodes tend to be connected to high degree ones, and conversely. Likewise,
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Fig. 1. Left: the degree distribution of the original interaction network, fittedby a power law of exponentα = 1.3, and the one of a typical
random graph of same size. Right: the degree correlations,i.e. the average degree of neighbors of nodes of degreei as a function ofi, for
both the original interaction network, for a typical random graph of samesize, and for a typical random graph with the same size and degree
distribution.
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Fig. 2. Left: the clustering coefficient distribution. Right: the correlations between clustering coefficient and degree,i.e. the average clustering
coefficient of nodes of degreek as a function ofk. Each plot is given for both the original interaction network, for a typicalrandom graph
of same size, and for a typical random graph with the same size and degree distribution.

small degree nodes tend to have a high clustering while high degree ones have a smaller clustering. The
network has many nodes of degree0, which induces the same number of connected components of size
1. It also has8 components reduced to only one link, and all the other nodes are in the giant component.
It may therefore be viewed as connected, once the nodes of degree 0 have been removed. In the giant
component, the distances are well centered on an average value: only a few pairs of nodes are at a distance
which varies significantly from the average, and even in these cases the difference remains small. Finally,
it appears clearly in Figure 4 that nodes with high degree aremorecentral in terms of distance than nodes
with low degree. On the countrary, there is no obvious relation between clustering and centrality.

Let us insist on the fact that our purpose here isnot to interpret these results: our aim in this section
was to identify some non-trivial properties of the network under concern, in order to explore in the next
sections how the way it is constructed may be seen as responsible for these properties.

It appears clearly that the interaction network is very different from a random graph with the same size:
the degree distribution is heterogeneous, the clustering coefficient is several orders of magnitude larger
than in a random graph, and actually all the other propertiesare poorly fitted by random graphs, see the
figures. Notice that the fact that there are very few nodes of very low degree in purely random graphs
implies that it is almost connected (the giant component is almost the whole graph). If we first remove all
the nodes of degree0 or if we restrict ourselves to the giant component of the original network, however,
the results are similar: the original interaction network is far from a random graph of the same size.

If we compare it to a random network with the same size and degree distribution, the difference is
not so huge. First, of course, the degree distribution is thesame, which implies that there is the same
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Fig. 3. Left: the connected component size distribution. Right: the distribution of distances between pairs of nodes. Each plot is given
for both the original interaction network, for a typical random graph of same size, and for a typical random graph with the same size and
degree distribution.
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Fig. 4. Left: the correlations between centrality and degree,i.e. for all i the average distance of nodes of degreei to all others. Right:
the correlations between centrality and clustering,i.e. for all i
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all others. Each plot is given for both the original interaction network, for a typical random graph of same size, and for a typical random
graph with the same size and degree distribution.

amount of nodes of degree0, almost all the others being in the giant component. Therefore the size
of the giant component and the distribution of the connectedcomponent sizes are well fitted. Likewise,
the degree correlations and the distance distribution are very well fitted, which means that they may be
seen as consequences of the size and the degree distribution. The fit for correlations between degree and
centrality is also quite good.

Though the difference is not huge, the fit is not as good if we observe properties related to clustering.
First, the average clustering is significantly lower in random graphs with the same size and degree
distribution than in the original network. As can be observed in Figure 2, the clustering distributions
have the same shape but the original one is shifted towards the largest values. The correlations with
degree show that this is due to the fact that nodes of low degree (in particular the ones with very low
degree) tend to have a very high clustering in the original network: almost50 % of nodes of degree2
actually form a triangle with their two neighbors (while only one third do in the corresponding random
graph).

Finally, we obtain quite a precise description of the interaction network we consider (though many
other properties may be observed), and we give evidence of the fact that is is very different from a typical
random graph with the same size. The fit with a random graph with the same size and degree distribution
is much better, but not perfect. Moreover, obtaining properties as a consequence of global statistics like
the degree distribution is not satisfactory since it bringsunsufficient explaination of thecausesof these
properties. Moreover, as we will discuss in Section VI, thisapproach can hardly be extended to more
subtle properties. This is why we propose another approach aimed at capturing the original properties
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more precisely, at giving some explainations for these properties, and which may be extended to more
complex properties.

III. T HE MULTI -LEVEL FORMALISM .

The raw data is nothing but a set of messages, which we will denote byM . Each messagem is labelled
with an authora(m). Moreover,m may be an answer to another messagem′. We then callm′ the father
of m and we denote it bym′ = f(m). If m has no father defined this way (it is not an answer to any
other message) then we put as a convention thatf(m) = m.

This leads to the following set of definitions. Theroot r(m) of a messagem is either m itself if
f(m) = m, or else it is the root off(m). Notice that not all message is the root of any message, but
only the ones which are not answers to any other message. Given the nature of our data, we call these
messages theroots, or queries(they generally correspond to queries posted by users on themailing-list)
and denote their set byQ ⊆ M .

We may now define thethread to which a messagem belongs as

t(m) = {m′ such thatr(m′) = r(m)}

A threadt then is a set of messages such that all messages in the set havethe same root and no other does.
We will denote the set of threads byT . Notice that a threadt always contains exactly one root, which
we denote byr(t), and each rootr defines exactly one thread,t(r). Therefore there is a trivial bijection
between the set of threads, the set of roots and the set of queries. We will use these terms equivalently,
depending on the context.

A thread has a tree structure with respect tof , which leads to the following definitions. First notice
that the root of a threadt is nothing but the root of the corresponding tree. Then we define the depth of a
message as its distance to its root:depth(m) is 0 if m is a root, and1 + depth(f(m)) else. The height of
a threadt is the maximal depth over all its messages:height(t) = max{depth(m), m ∈ t}. The degree
do(m) of a messagem is the number of messagesm′ 6= m such thatf(m′) = m.

Considering now the author point of view, we define thecontribution of an authorx as the number
of messages he authored:c(x) = |{m ∈ M, a(m) = x}|. Likewise, thedispersionof an authorx is the
number of threads to which he/she contributed:d(x) = |{t ∈ T, ∃m ∈ t, a(m) = x}|. Conversely, the
numbera(t) of authors in a threadt is a(t) = |{a(m), m ∈ t}|.

The first level at which we will consider the data is this one: we see the data as a set of threads,
themselves viewed as trees.

The second level at which we will consider the data is obtained from the first one by adding the
authoring information: each thread is a labelled tree.

Finally, the third level is the one of the interaction network, already defined and studied in Section II.
It can be defined using the formalism above as follows:G = (V,E) whereV = {a(m), m ∈ M} is the
set of authors, andE = {(u, v), u = a(m) ∈ V, v = a(m′) ∈ V, m 6= m′, m = f(m′) or m′ = f(m)}
is the set of links such that two authors are linked if one of them answered to a message posted by the
other. Notice that this graph may be obtained from the threadtree structures by merging all the nodes
having the same author.

The three levels are illustrated in Figure 5. It must be clearthat the data may be considered at several
other levels, and could be observed using a variety of models. For instance, one may consider the threads
as graphs among authors. One may also include the directed nature of links, or time information (the date
at which each message appeared), which is available. All these formalisms may be relevant depending
on the aim of each study. We focus here on the three levels defined above, which are sufficient for our
purpose.

IV. T HE THREADS.

In this section we present basic statistics and models for the data at thread level. We will therefore
consider sets of trees which we describe using statistical tools, and we compare the values obtained for
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Fig. 5. The three levels at which we will consider our data. From left to right: the threads (trees), the labelled threads, and the interaction
network. Notice that we removed the loops (here,(f, f)) and that we do not consider multiple links (for instance here(a, b)).

the original data to the ones obtained for the models.
The first model is the purely random one: we consider the same number of messages as in the original

data, we choose randomly as many roots as in the original data, and each message is linked to a randomly
chosen father. We repeat this until there is no cycle, and therefore we obtain a set of trees chosen at
random among the ones having the same number of messages and roots. We will call this therandom
model for threads.

The other model we will consider only adds the degree constraint: we draw the degree of each message
according to the original degree distribution and then we choose for each message a father which still
has not as many sons as its degree. Again, we repeat this untilthere is no cycle, and therefore we obtain
a set of trees chosen at random among the ones having the same number of messages and roots, and the
same degree distribution as the original one. We call this model thedegreemodel.

As we will see, this model is sufficient to capture the basic properties we will consider here. Moreover,
it is important for us to consider only very simple models, inorder to focus on the multi-level nature of
the data. We will therefore not consider more subtle models.
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Fig. 6. From left to right: the degree distribution of messages in threads; their depth distribution; the correlations between their depth and
degree. Each plot is given for the original data and bothrandomanddegreemodels.
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Fig. 7. From left to right: the distribution of thread sizes (number of messages); the distribution of their heights; and the correlations
between both (i.e. the average size of threads of heighti, for all i). Each plot is given for the original data and bothrandomand degree
models.

We can now observe the statistics obtained for real-world data, together with the statistics obtained
for the two models. Let us begin with some properties of the messages, namely their degree distribution,
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their depth distribution, and the correlations between these two properties, see Figure 6. One can observe
on these plots that the properties are quite heterogeneous and that there is no clear correlations between
them. For instance, almost10 000 messages recieved only one answer, while some recieved morethan10.
There is however no message with a huge number of answers, which is not surprising. Similar remarks
hold for depths.

If we turn to properties of threads themselves, the heterogeneity is more pronounced, see Figure 7: most
threads contain only a few messages, but one of them containsmore than200 messages. It is however a
very special case, and here again the heterogeneity is not huge. As one may expect, there is a correlation
between thread height and size.

We observed various other statistics (including the correlations between the ones plotted here) and all
the results are similar. We finally conclude that thedegreemodel preforms better than therandomone but
the difference is not huge (which is due to a quite low heterogeneity), and the fit is good but not perfect.

It must however be clear that these models miss important properties of the threads, like for instance
the presence of large filiform structures,i.e. series of messagesm0, m1, . . ., ml such thatmi = f(mi−1))
anddo(mi) = 1 for all 0 < i ≤ l. Capturing such properties can be done quite easily, but it isout of the
scope of this paper, see Section VI.

V. AUTHORS IN THREADS.

The thread models proposed in the previous section are not sufficient for our purpose. Indeed, in order
to be able to construct an artificial interaction network between authors from a set of artificial threads,
we need to associate an author to each message. This is the aimof this section.

Again, we will observe basic properties of this associationin our real-world data, and try to capture
them in very simple models. Let us suppose that a set of messagesM is given and that there is a thread
structure on this set defined by the functionf(m) which, for eachm ∈ M gives its father. We also
suppose that a setA of authors is given. We want to define models which produce functions fromM to
A giving an authora(m) to each messagem.

Again, the first model we will consider is purely random: the author of each message inM is chosen
uniformly at random inA. We will call this therandommodel for authors.

The other model we will consider relies on the distribution of author contributions. We suppose that this
distribution is given, then we sample the contributionc(a) of each authora according to this distribution,
and we choose at randomc(a) messagesm ∈ M for which we puta(m) = a. We will call this the
contributionmodel.

Let us notice that we may use artificial threads obtained in previous section to evaluate our models of
author labelling. However, this would imply that the performances we observe in this section could be
biased by the models in the previous section. We will therefore use here the original threads, and simply
replace the original authors with authors chosen with the models. This makes it possible to evaluate the
properties of the two kinds of models separately.
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Fig. 8. From left to right: the contribution distribution; the dispersion distribution; the distribution of the number of roots labelled by the
same author. Each plot is given for the original data and bothrandomandcontribution labelling models, on the original threads.
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Fig. 9. From left to right: the size (in terms of authors) distribution of threads; correlations between thread sizes in terms of messages and
in terms of authors; the number of roots of threads authored by each author, as a function of the total number of threads he/she authored
(for each author we draw a point with coordinates given by these two properties). Each plot is given for the original data and bothrandom
andcontribution labelling models, on the original threads.

Let us first observe in Figure 8 the contribution and the dispersion distributions. The shapes of the
plots for the original data are unusual: they begin with a polynomial decay but the tail of the distribution
in unstructured. This means that authors may be separated into two sets: the ones which have a quite
low contribution, the number of which decays polynomially with the contribution, and the ones with
high contribution, between which there is no difference. Inother words, the number of authors having
a given contribution is independent of this contribution when it is large enough. The same observations
hold for dispersion. Notice that the polynomial decay is notcaptured by therandommodel, but that the
tail is well fitted which indicates that it is due to the structure of threads rather than the labelling model.
The contribution model takes the contribution distribution as a parameter, but it also fits the dispersion
distribution very well. This is also true for the number of roots labelled by each author. We do not enter
in more details here since our aim is not to give interpretations of the observed properties.

If we turn to more complex properties, like the ones in Figure9, the fit is not so good but it remains
reasonable. This shows that, as long as we are concerned withbasic properties of authors in threads, the
contribution model is sufficient. It must be clear however that it misses some important features of the
original data. For instance, in the original data, if a message is authored bya then many other messages
in the threadt(a) containinga will also be authored bya with high probability. These properties may be
included in author models, but this is out of the scope of thispaper. Our purpose here is not to model
the original data as precisely as possible, but to capture some nontrivial properties which may play a role
in the properties of the interaction network. We will therefore not deepen more the modeling of message
labels.

VI. RESULTS AND DISCUSSION.

In Section II, we described the main properties of the interaction network, up to a quite high level of
detail. In Section III, we proposed a formalism which makes it natural to observe the object under concern
at three different levels: the thread level, the labelled thread level, and the interaction network itself. We
studied basic properties of the two first levels in Sections IV and V, and we proposed simple models to
capture them.

We can now address the central question of this paper: can theproperties of the interaction network
be seen as consequences of properties at the two other levels? In order to answer this question, we will
generate articifial networks using the models proposed for the first levels and compare them with the
original network. We obtain seven artificial networks, plusthe classical comparison with purely random
graphs and with random graphs with the same degree distribution already considered in Section II.

We therefore produce here the same statistics as in Section II for the seven new relevant cases. See
Table II and Figures 10 to 17.

There are several important points to notice. First, it appears clearly that the model used for the threads
has little influence on these results. This is a consequence of the fact that, at least concerning the properties
under concern, the properties of threads are quite close from random as seen in Section IV. On the
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THREADS

random degree original
m k δ m k δ m k δ

L
A

B
E

L
S random 19111 16.71 0.0073 19129 16.73 0.0073 19119 16.72 0.0073

contribution 14415 12.61 0.0055 14450 12.64 0.0055 14420 12.61 0.0055
original – – 9592 8.39 0.0037

THREADS

random degree original
d D d D d D

L
A

B
E

L
S random 3.01 5 3.01 5 3.01 5

contribution 2.89 7 2.88 7 2.87 6
original – – 2.97 8

THREADS

random degree original
n cc n cc n cc

L
A

B
E

L
S random 2287 0.0082 2286 0.0082 2287 0.0086

contribution 2149 0.32 2178 0.33 2192 0.33
original – – 1743 0.33

Table II. Properties of the artificial interaction networks. From top to bottom: the basic statistics; the average distance and the diameter;
the size of the giant component and the clustering coefficient.
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Fig. 10. Degree distributions in the artificial interaction networks. See Figure 1 and its caption.
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Fig. 11. Degree correlations in the artificial interaction networks. See Figure 1 and its caption.

countrary, the model used for author labellings has a stronginfluence, and thecontribution model gives
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Fig. 12. Clustering distributions in the artificial interaction networks. See Figure 2 and its caption.
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Fig. 13. Correlations between degree and clustering in the artificial interaction networks. See Figure 2 and its caption.
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Fig. 14. Distribution of connected component size in the artificial interactionnetworks. See Figure 3 and its caption.

very good results. The artificial interaction networks obtained with thecontribution model for authors
and thedegreeone for threads gives better performance than the ones obtained in Section II. The only
properties on which they perform poorly is the size of the giant component and the degree correlations;
this is due to the fact that the artificial networks are almostconnected, which is in turn due to the fact
that they do not capture the presence of threads of size1. This can be easily added in the models, or one
may study these special threads separately.

Finally, it appears from these statistics that, despite ourmodels are very basic (and, as we have seen,
they miss important properties of the original data), they are sufficient to capture most simple properties
of the original interaction network. In particular, they dosignificantly better than random graphs with the
same size, and random graphs with the same size and degree distribution.

We will not go further in the analysis of the results since this is sufficient for our purpose. But we want
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Fig. 15. Distribution of distances in the artificial interaction networks. See Figure 3 and its caption.
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Fig. 16. Correlations between degrees and centrality in the artificial interaction networks. See Figure 4 and its caption.
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Fig. 17. Correlations between clustering and centrality in the artificial interaction networks. See Figure 4 and its caption.

to insist on one point which seems particularily important to us. It must be clear that the fact that the
properties of our artificial networks are similar to the onesof the original network is a non-trivial result:
these properties were not encoded explicitely in the models, which rely only on very basic properties of
threads and authors. Showing that the properties of threadshave little influence while the frequency of
occurences of authors are central also is a non-trivial result. The multi-level formalism makes it possible
to derive such results, which improve significantly our understanding of the underlying object, whereas
random graph models can only be used to mimic the properties of the object.

Going further, we beleive that a multi-level approach wouldmake it possible to capture much more
subtle properties than the ones discussed here. For instance, the redundancy of authors inside each thread
may induce clusters in the interaction network; the presence of filiform structures may induce large cycles;
etc. More importantly, if one wants to capture the directed and/or weighted nature of the data, then the
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multi-level approach seems very well suited whereas randomgraph approaches are of limited help.

CONCLUSION AND PERSPECTIVES.

In this contribution we studied an interaction network between authors induced by exchanges in
a mailing-list. We proposed a three-level formalism to describe and study this data. This formalism
emphasizes the fact that the final network is constructed from smaller, simplier substructures (the threads
and the labelled threads). It makes it possible to investigate the influence of the properties of these small
structures, and of this construction process, on the properties of the overall network.

We observed simple properties of the threads and of their labellings. We captured them in some
basic models, either totally random or focusing one particular property. We then compared the artificial
interaction networks obtained by combining these models tothe original ones, and to random ones. It
appears clearly that some non-trivial properties of the original network, missed by the usual random
models, are captured by the multi-level approach.

Our aim here is not to say that the models we propose are relevant and capture some real-world feature.
But we give evidence of the relevance of such an approach to capture, explain and model subtle properties
of complex networks, which would be very hard with the classical approach.

We are convinced that this result is very general. Many networks are actually induced by a construction
process which can be simply described (and which often relies on the merging of small substructures).
Let us cite for instance co-authoring networks, in which authors are linked together if they signed a paper
together: each paper induces a clique, which may be seen as responsible for the high clustering [28],
[42], and the overall structure of the network is induced by the way these cliques overlap. Modeling such
networks by first capturing the redundency between co-authoring relations would certainly make sense.
The actor network and co-occurrence networks are also in this case. Going further, many social networks
may be seen as the union of ego-centered networks; modeling these small networks and the way they are
combined to form the global network is a natural perspectiveof our work.

Following these remarks, there are at least two clear direction in which our work should be continued.
One the one hand, one could certainly use this approach and the models we proposed (or similar ones)
to give social interpretations of the observed properties.Indeed, even if we did not discuss this here, the
models actually rely on simple social assumptions which we show can be seen as responsible for the
properties of the whole network. Analysing this from a social science point of view remains to be done.
On the other hand, this approach has the important advantageof relying on very simple models, which
makes it possible toprove their properties, and their influence on the whole. An analytic study is then
possible and would lead to a tightening of theoretical and practical questions.

One may also improve this work by proposing better models forthe different levels, or even another
multi-level modeling. As already noticed, it is indeed possible to see the data at a wide variety of levels.
Some may be relevant depending on the objectives. Likewise,many other statistics could be considered
and lead to new insight. As already discussed in Section III,one could also view the network as directed,
weighted, and also as evolving during time. There is currently an important lack of methods and tools
to tackle the complexity induced by this richer information, but it makes no doubt that it would improve
significantly our understanding of the underlying objects and phenomena. As already pointed out, the
multi-level formalism has important advantages to tackle this.
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