The lattice of integer partitions
and its infinite extension
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Abstract: In this paper, we use a simple discrete dynamical model to study
integers partitions and their lattice. The set of reachable configurations of the
model, with the order induced by the transition rule is exactly the lattice of all the
partitions of an integer, equiped with the dominance ordering. We first explain how
this lattice can be constructed, by showing its self-similarity property. Then, we
define a natural extension of the model to infinity, which is compared to the Young
lattice. Using a self-similar tree, we obtain an efficient encoding of the obtained
lattice which makes it possible to compute easily and efficiently all the partitions
of a given integer. This approach also gives a new formula for the number of
partitions of an integer, and some informations on special sets of partitions, such
as length bounded partitions.
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1. PRELIMINARIES

A partially ordered set (or poset) is a set P with a reflexive (z < x), transitive
(x <yandy < zimplies z < z) and antisymetric (z < y and y < z implies z = y)
binary relation <. A [attice is a partially ordered set such that any two elements a
and b have a least upper bound, called supremum of a and b and denoted by a V b,
and a greatest lower bound, called infimum of a and b and denoted by a A b. The
element a V b is the smallest element among the elements greater than both a and
b. The element a A b is defined dually. A lattice is a strongly structured set, and
many general results, for example efficient encodings and algorithms, are known
about them. For more details, see for example [DP90].

A partition of the integer n is a k-tuple a = (a1, aq, - .., ax) of positive integers
such that Zle a; = n and a; > a;41 for all 7 between 1 and k (with the assumption
that ag1 = 0). The Ferrer diagram of a partition a = (a1, as, ..., ax) is a drawing
of a on k adjacent columns such that the ¢-th column is a pile of a; stacked squares,
which we will call grains because of the sand pile dynamics we will consider over
them. For example, p = (4,3,3,2) and ¢ = (6,2,1,1,1,1) are two partitions of

n = 12, and their Ferrer diagrams are 5 and %m respectively.
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The dominance ordering is defined in the following way [Bry73]. Consider two
partitions of the integer n: a = (a1, ag, ..., ax) and b = (by, b, ..., b;). Then

J j
a > bif and only if » a; > > b; for all j.
i=1 i=1

From [Bry73], it is known that the set of all the partitions of an integer n with
the dominance ordering is a lattice, denoted by Lg(n). In his paper, Brylawski
proposed a dynamical approach to study this lattice. We will introduce a few
notations to explain it intuitively. For more details about integer partitions, we
refer to [And76].

Let a = (ay,...ax) be a partition. The height difference of a at i, denoted by
d;(a), is the integer a; — a;.1 (with the assumption that ax,; = 0). We say that
the partition a has a cliff at i if d;(a) > 2. We say that a has a slippery plateau
at 7 if there exists £ > i such that d;(a) = 0 for all i < j < k and di(a) = 1. The
integer k — 7 is then called the length of the slippery plateau at i. Likewise, a has
a non-slippery plateau at i if d;j(a) = 0 for all ¢ < j < k and it has a cliff at k. The
integer k — 4 is called the length of the non-slippery plateau at 7. The partition a
has a slippery step at i if the partition defined by o' = (a1,...,a; — 1,...,ax) (if
it exists) has a slippery plateau at i. Likewise, a has a non-slippery step at i if o'
has a non-slippery plateau at i. See Figure 1 for some illustrations.
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FiGurE 1. From left to right: a cliff, a slippery plateau of length
3, a non-slippery plateau of length 2, a slippery step of length 2 and
a non-slippery step of length 3.

i T % jjﬂ%ﬁ TTHHE

FIGURE 2. The two evolution rules of the dynamical model

Consider now the partition a = (a1, as, ..., ax). Brylawski defined the two fol-
lowing evolution rules: one grain can fall from column ¢ to column ¢ + 1 if @ has
a cliff at 4, and one grain can slip from column % to column ¢ + [ 4+ 1 if ¢ has a
slippery step of length [ at 7. See Figure 2.

Such a fall or a slip is called a transition of the model and is denoted by ¢ — b
where 7 is the column from which the grain falls or slips. If one starts from the
partition (n) and iterates this operation, one obtains all the partitions of n, and
the dominance ordering is nothing but the reflexive and transitive closure of the
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relation induced by the transition rule [Bry73]. See Figure 3 for examples with
n =7 and n = 8. We denote by dirreach(a) the set of configurations directly

reachable from a, i.e. the set {b | a — b}. Notice that in the context of dynamical
models theory, those elements are called the immediate successors of a. However,
since we are concerned here with orders theory, we cannot use this term, which
takes another meaning in this context.
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FIGURE 3. Diagrams of the lattices Lg(n) for n = 7 and n = 8.
As we will see, the set Lg(7) is isomorphic to a sublattice of Lg(8).
On the diagram of Lg(8), we included in a dotted line this sublattice.

Before entering in the core of the topic, we need one more notation. If the
k-tuple a = (a1, as,...,a) is a partition, then the k-tuple (ai,as,...,a;_1,a; +
1,ai41,...,a;) is denoted by a*i. In other words, a is obtained from a by adding
one grain on its ¢-th column. Notice that the k-tuple obtained this way is not
necessarily a partition. Finally, if S is a set of partitions, then S* denotes the set
{a*|a € S}.

We will now study the structure of the lattice of the partitions of an integer
n and we will show its self-similarity by giving a method to construct Lg(n +
1) from Lg(n). Then, we will define an infinite extension of these lattices: the
lattice Lg(o0) of all the partitions of any integer. This lattice has some interesting
properties, which we will discuss. We will also compare it to the Young lattice,
which also contains all the partitions of any integer, but ordered in a different way.
Finally, we will construct a tree based on the construction process detailed in the
beginning of the paper. This tree will make it possible to give a simple and efficient
algorithm to compute all the partitions of a given integer. It also has a recursive
structure, from which we will obtain new formula for the number of partitions of
an integer n and some results about certain classes of partitions.



2. FrRoM Lg(n) TO Lg(n+1)

In this section, our aim is to construct Lg(n + 1) from Lg(n), viewed as the
graph induced by the dynamical model, with the edges labelled by the number of
the column from which the grain falls or slips, as shown in Figure 3. We will call
construction of a lattice the computation of this labelled graph. We first show that
Lp(n)** is a sublattice of Lg(n + 1). For example, in Figure 3 we included in a
dotted line Lz (7)* within L(8). This remark allows us to start the construction
of Lg(n + 1) from Lg(n) by computing Lg(n)¥' and then adding the missing
elements of Lg(n + 1). After characterizing those elements that must be added,
we obtain a simple and efficient method to acheive the construction of Lg(n + 1)
from Lg(n).

Proposition 1. Lg(n)% is a sublattice of Ly(n + 1).

Proof. We must show that inf(a,b) = ¢ in Lg(n) implies inf(a*',b") = " in
Lg(n+1), and that sup(a,b) = cin Lg(n) implies sup(a*',b*) = ¢ in Ly(n+1).
We know from [Bry73] that the dominance ordering over Lg(n) implies:

J J J

inf(a, b) = ¢ if and only if, for all j, one has Zcz- = mm(z as, Z b;).

i=1 i=1 =1
From this, it is straightforward to see that ¢* is in Lg(n + 1), and clearly ¢"' =
inf(a*1, b*).

Let now ¢ = sup(a, b) in Lg(n) and d = sup(a*,b*') in Lp(n)*. We will show
that d = ¢"*. We have ¢ > a and ¢ > b, therefore ¢"* > a* and ¢** > b*. This
implies that c** > d. To show that d > ¢*', let us begin by showing that d; = ¢;+1.
We can suppose a; > by. The partition (a1, a1,a; —1,a1 —2,...) is greater than a
and b, and so it is greater than c. Moreover, ¢ > a implies ¢; > a; and so ¢; = a;.
Since ' < d < ¢, we then have dy = a;+1=c¢;+1. Let e = (d; — 1,dy, d3, .. .).
Since d < ¢* and ¢; = a4, e is a partition: d; — 1 > ds. Moreover, d > a*' and
d > b", and so e > a and e > b. This implies that e > sup(a,b) = ¢ and that
d > c%, which ends the proof. 0

This result shows that one can construct the lattice Lg(n + 1) from Lg(n)as
follows. The first step of this construction is to construct the set Lp(n)¥ by
adding one grain to the first column of each element of Lg(n). Then, one has
to add the missing elements and their edges. Therefore, we will now consider
the consequences of the addition of one grain on the first column of a partition,
depending on its structure.

Proposition 2. Let a be a partition. Then, we have:
1. if a has a cliff or a non-slippery plateau at 1 then:
dirreach(a*') = dirreach(a)™

2. if a has a slippery plateau of length | at 1 then a*! Ly ah+ and:
dirreach(a*') = dirreach(a)% U {a%+1}
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3. if a has a slippery step at 1, then let b be such that a Ly b We have
att - a2 2y ph and:
dirreach(a™) = (dirreach(a) \ {b})* U {a*?}

Proof. 1. Notice first that the transitions possible from @ on columns other than
the first one are still possible from a*'. It suffices now to see that the addition
of one grain on a cliff does not allow any new transition from the first column,
since such a transition was already possible. Likewise, the addition of one
grain on a non-slippery plateau does not allow a new transition.

2. No transition from a was possible on its first column. However, a*' has a

slippery step at 1 and so a transition a* L4 b is now possible. It is easy to
verify that b = a¥+1.

3. Notice first that transitions on columns other than the first one are not af-
fected by addition of one grain on the first column. Let us now observe what
happens about the transition from the first column. Notice that one transi-
tion from the first column is still possible, since a** has a cliff at column 1.

However, the transition a** — b* is now impossible, but a new transition is

possible: a¥ — a*2. Now, a** has either a slippery step or a cliff at 2, and
so b*! is directly reachable from it. O

For a given integer n, let us denote by S(n) the set of partitions of n with a
slippery step at 1, by T'(n) the set of partitions of n with a non-slippery step at
1, and by Uj(n) the set of partitions of n with a slippery plateau of length [ at
1. The propositions above show that, once we have Lg(n)*', the next step of the
construction is the addition of the elements and edges of the sets S(n)*2, T'(n)*? and
Uy(n)¥+1. Now, we must add the missing transitions from these new elements, and
the missing elements directly reachable from them. We show below that actually
no element is missing, and we give a description of which missing transitions need

to be added.

Theorem 1. Every element of Lg(n + 1) is in Lg(n)¥, in S(n)¥2, in T(n)** or
in Uy(n)¥+1 for some .

Proof. We have shown that all the configurations directly reachable from the el-
ements of Lg(n)™ are in the union of these sets. Let us now show that all the
configurations directly reachable from the elements of the union are already in it.
Several cases are possible.

e Let a € S(n). Then, a s bin Lg(n). Only one of the possible transitions from
a is affected by the addition of one grain on the second column: the transition on

column 1. Moreover, due to the choice of a in S(n), a transition 25 s possible
from a*2. From these remarks, we obtain:

dirreach(a*?) = (dirreach(a) \ {b})** U {b"'}.
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Notice now that the elements of dirreach(a)\{b} have a slippery step at 1, therefore
the elements from (dirreach(a)\ {b})** are in S(n)*>. Moreover, b*' is in Lg(n)4,
therefore there is no missing element directly reachable from a*2, and the transition
a*t —5 b4 is replaced by a%? 2 b¥.

e Let a € T'(n). Then, the addition of one grain on the second column of a does
not prevent any transition, and we have:

dirreach(a*) = dirreach(a)¥.

Moreover, the elements of dirreach(a) have a slippery or non-slippery step at 1,
and therefore the elements of dirreach(a)** and the transitions from a** are in
S(n)¥* UT(n)*.

e Let a € Uj(n). This case requires more attention. We distinguish three subcases:

1. a has a cliff at { + 1. Then, we have a == b - ¢ in Lg(n). The addition
of one grain on the (I + 1)-th column of a does not prevent any transition,
therefore we have:

dirreach(a"+') = dirreach(a)"+.

From the choice of a, we know that the elements of dirreach(a) \ {b} have a
slippery plateau at 1. Therefore all the elements of dirreach(a)Y+' have al-
ready been added. Moreover, one can verify that ¢ = (a1, ...,a—1, aj11, ajro+

1,...), and that a* — g%+t £ ¢4, Therefore, b%+1 = ¢4, Moreover, ¢ has
a slippery plateau of length [ — 1 at 1, therefore the element ¢ has already
been added. Thus, no element is missing; there is only one missing transition:
ahi+1 ﬂ) b+t

2. a has a non-slippery step at [, and so a non-slippery plateau of length I’ at
[ 4+ 1 (with possibly I’ = 0). Then, the addition of one grain on the (I + 1)-th
column of a does not prevent any transition that was previously possible.
Therefore, we have:

dirreach(a'+') = dirreach(a)¥+'.

The elements of dirreach(a) all have a non-slippery plateau at 1, therefore
all the elements of dirreach(a)%+ have already been added.

3. a has a slippery step of length " at [, and so a slippery plateau of length
I' at [ + 1 (with possibly I = 0). Then, @ — b in Lg(n). The possible
transitions from a%+! are the same as the possible ones from a, except the
transition on the column [. All the elements directly reachable from a except
b have a slippery plateau at 1, therefore the elements of dirreach(a) \ {t}¥+!

have already been added. Moreover, a¥+ 2 gh+v+1. But we can verify that
at+'+1 = b¥_ and, since b has a slippery plateau of length [ — 1 at 1, this
element has already been added; there is only one missing transition: a“+

ﬂ b4 O
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This result makes it possible to write an algorithm which constructs the lattice
Lg(n+1) from Lg(n) in linear time with respect to the number of added elements
and transitions. Notice that we can obtain Lg(n) for an arbitrary integer n by
starting from Ly (0) and iterating this algorithm, and so we have an algorithm that
constructs Lg(n) in linear time with respect to its size.

3. THE INFINITE LATTICE Lp(c0)

We will now define Lg(o0) as the set of all the configurations reachable from (oo)
(this is the configuration where the first column contains infinitely many grains and
all the other columns contain no grain). Therefore, each element a of Lp(co) has
the form (oo, ag,as,...,ar). As in the previous section, the dominance ordering
on Lp(co) (when the first component is ignored) is equivalent to the order induced
by the dynamical model. The first partitions in Lg(o0) are given in Figure 4 along
with their covering relations (the first component, equal to oo, is not represented
on this diagram).
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FIGURE 4. The first elements and transitions of Lg(co). As shown
on this figure for n = 6, we will see two ways to find parts of Lg(c0)
isomorphic to Lg(n) for any n.

It is easy to see that we have a characterization of the order similar to the one
given in [Bry73] for the finite case: let a and b be two elements of Lg(o0), a being
of length p and b being of length ¢. Then,

@ >1,(0) b if and only if for all j between 2 and max(p, ¢), Z a; < Z b;.
(2] 1>y
We will start this section by proving that Lp(oo) is a lattice and by giving a
formula for the infimum in Lg(co). After this, we will show that, for any n, there
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are two different ways to find sublattices of Lg(o0) isomorphic to Lg(n). We will
also give a way to compute some other special sublattices of Lg(c0), using its
self-similarity. Finally, we will compare Lg(co) to the Young lattice.

Theorem 2. The set Lg(oo) is a lattice. Moreover, if a = (0o, as,...,a;) and
b= (00,by,...,b) are two elements of L(00), then infy,,(w(a,b) = c in Lp(co),
where ¢ is defined by:

¢ = max(z aj, ij) - ch for all i such that 2 < i < max(k,l).
j2i J>i J>i

Proof. We first prove that c¢ is an element of Lg(oco) and then we prove that
c is equal to infr,(c)(a,b). Let n = 203 .c0a; + > ;500). Let ' = (n —
2122 @i, Ao, ... ,05), b = (TL—X:Z-22 bi,bo, ..., b)) and ¢ = (n—z:i22 CirC2, - - - Craa(kyl))-
It is then obvious that a’ and b’ are two partitions of n and that ¢’ is the infimum
of @' and b' by dominance ordering in Lg(n). Therefore, ¢’ is a decreasing se-
quence, and so c¢ is an element of Lg(oco). Moreover, according to the definition of
> Ls(o0), C is the maximal element of Lg(0o) which is smaller than a and b, and so
c= infLB(oo) (CL, b)

By definition, Lg(oc) has a maximal element. Since it is closed for the infimum,

Lp(00) is a lattice. 0
Theorem 3. Let n be a positive integer. The application:
T Lg(n) — Lp(c0)
a=(ay,a,...,a5) —> a=(co,as,...,a)

s a lattice embedding.

Proof. 1t is obvious that 7 is injective. Moreover, we can apply a proof similar to
the one of Proposition 1 to show that infr, () (7(a), 7(b)) = 7(infLywm)(a, b)) and
SUPL, o0y (T(@), (b)) = T(sUPL,(n)(a,b)). We can then conclude that 7 is a lattice
embedding. 0

Let Lp(n) denote the image by 7 of Lg(n) in Lg(cc). From Theorem 3, Lg(n)
is a sublattice of Lp(oc). From Proposition 1, Lg(n)¥* is a sublattice of Lp(n+1).
Therefore, since Lg(n)¥t = Lg(n), we have an increasing sequence of sublattices:

Lp(0) < Lp(1) <---< Lp(n) < Lp(n+1) <--- < Lp(00).
where < denotes the sublattice relation.

We can say more about this increasing sequence of lattices. Let a = (o0, ag, as, - . ., ax)
be an element of Lp(co). If one takes a, = ag + 1 and n = 3%, a;, then the par-
tition o' = (ay, ag,-..,ax) is an element of Lg(n). Since a = w(a'), this implies
that a is an element of Lg(n). Conversly, any element of Lg(oco) is of the form
a = (00,as,...,ar). Therefore, a’ = (as,...,ax) is a decreasing sequence, and if
we put n =) .., a; then o’ € Lg(n), i.e. a € Lg(n). Finally, we have:

| Ls(n) = Ls(c0)

n>0




Therefore, Lg(oo) can be viewed as the limit of Lg(n) when n grows to infinity.
Theorem 3 gives a way to find, for any n, a sublattice of Lz (oc) isomorphic to

Lg(n). We will see in the following another way to find such parts. In order to

acheive this goal, we first study the infinite union of all the sets Lg(n) for any n:

Ly(c0) = | | Lun)

where LI denotes the disjoint union. We consider the following relation over Lg(00).
Let a € Lg(m) and b € Lp(n). We have a — b in Lg(oc0)if and only if one of the

following applies: n =m and @ — bin Lg(n),or i =0,n=m+ 1 and b = a".
In other terms, the elements of Lg(n) are linked to each other as usual, whereas
each element a of Lg(n) is linked to a** € Lg(n + 1) by an edge labelled by 0.

From this, one can introduce an order on the set Lg(co) in the usual sense, by
defining it as the reflexive and transitive closure of this relation. We now show

that Lp(co) is isomorphic to Lg(00), and so that Lg(oo) is a lattice.

Theorem 4. The application x defined by:

X : Lp(oco) — Lg(o0)

a = (a1, as,...,ar) — x(a) = (0o, ar,as, ... ,ax)
18 a lattice isomorphism.

Moreover, a — b in Lg(co) if and only if x(a) Lan x(b) in Lg(o0).
Proof. x is clearly bijective. Moreover, it is clear from the definitions that for all

a and b in Lp(co), a — b if and only if x(a) <= x(b). Therefore, x is an order
isomorphism. Since Lg(00) is a lattice, this implies that y is a lattice isomorphism.

O

This theorem means that Lg(oco) is nothing but Lp(co) when one removes the
first component (always equal to co) of each element of Lg(co) and decreases the

label of each edge by 1. We will now see that Lg(n) is a sublattice of Lg(oc0) for
all n, which gives another way to find a part of Lg(oco) isomorphic to Lg(n).

—_

Theorem 5. For all integer n, Lg(n) is a sublattice of Lg(o0).

Proof. Let a and b be two elements of Lg(n), we prove that me’;('oE) (a,b) and
SUPL;Z;)(G’ b) belong to Lp(n). Let ¢ be infi,m)(a,b) and ¢’ be in L/B-z;)(a, b).
We have, a >, ¢ EL%) ¢, which means that 2221 a; < Zi21 d < Zi21 ¢;, and
S0 Y. ¢; = n. This implies that ¢’ belongs to Lg(n), and we obtain ¢’ = ¢. The
proof for the supremum is similar. O

We now have two different ways to find, for any integer n, a part of Lg(oo)
isomorphic to Lg(n). We can use this to compute some parts of Lg(oc). However,
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these methods do not give filters ? of Lz (0c0), which is however possible. We explain
how in the following.

Notice first that Lg(oc) can be viewed as the limit of the sequence of posets
defined for any n by:

Ly(<n) = |_| Ly (i)

with the same relation as the one defined above for Lg(00). From Theorem 3 and
5, we can deduce an efficient method to construct Lg(< n) for all n: it suffices to

compute (recursively) Lg(< n— 1), extract from it the part Lg(n), deduce Lg(n)
from this, and then add the links of the set {a — a*' such that a € Lg(n — 1) -}
We obtain this way Lg(< n). We show now that Lg(< n) is a sublattice of LB( )

for all n, which implies directly that it is a filter of Lg(00).

—_

Proposition 3. The poset Lg(< n) is a sublattice of Lg(c0) for all n.

~——

Proof. To prove that Lg(< n) is a sublattice of Lg(c0), we consider two elements
a and b of Lp(< n) and show that infL;-(T.g)(a, b) and SUPL/B'(T.S)(“’ b) belong to

Lg(< n). There exist £ and [ such that a € Lg(k) and b € Lg(l). We can
suppose whithout loss of generality that £ < | < n. Let ¢ = supL/B-(;g)(a, b).

Since ¢ > ——. a, there exists an integer m < k such that ¢ € Lg(m), and so

—Lp()
c € Lg(< n). Let now d = me/B;(»/)(a b). Let ' = (a1 +1 — k,ag,...). Then,
is in Lp(l) and infL/Bj(;)(a’,b) € Lg(l). Since d = znf (a b) > mfN (a',b),
we have d € Lg(<[). This implies the result. O

To finish this section, we will discuss the relations between the infinite lattice

Lg(oo) and the famous Young lattice. These two infinite lattices contain exactly
the same elements (all the partitions of all the integers), but ordered in a different
way: a < b in the Young lattice if for all 7 we have a; < b;. In other words,
the order over the partitions is the componentwise order. This order induces a
(distributive) lattice structure over the set of all the integer partitions. It has been
widely studied; see for example [Sta99, Ges93]. It can also be viewed as the set of
partitions obtained from the empty one, (), and by iterating the following evolution

rule: @ — b if b is a partition obtained from the partition a by increasing its i-th
component. This implies directly that the lattices can be decomposed into levels
(the i-th level contains the partitions obtained after i applications of the evolution
rule), and that level i contains exactly the partitions of n, i.e. the elements of
Lg(n). Notice moreover that these elements are not comparable in the Young

lattice therefore the order in Lg(oc) and the one in the Young lattice are very
different. However, they are put in relation by the following theorem:

2A filter F of a poset P is a subset of P suchthat Ve € F, Vy e P, y > 2 =>y € F.
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Theorem 6. [Lat00] The application m from Lp(co) into the Young lattice such
that m(a); is equal to ZjZi a; 15 an order embedding which preserves the infimum.

Proof. Let a and b be two elements of Lg(cc). We must show that 7(a) and 7 (b)

N

belong to the Young lattice, that a > bin Lp(00) is equivalent to 7(a) > m(b) in the
Young lattice and that inf(7(a), 7(b)) in the Young lattice is equal to «(inf(a, b))

in Lp(co). The two first points are easy: 7(z) is obviously a decreasing sequence
of integers for any z, and the order is preserved. Now, let ¢ = inf(a, b). Then,

m(c)i = iji Cj
= maz(}_;5; a5y D isi bi) from Theorem 2
= max(m(a);, m(b);)
= inf(n(a), (b)) in the Young lattice
which proves the claim. 0

Notice that this order embedding is not a lattice embedding, since it does not
preserve the supremum. For example, if ¢ = (2,2) and b = (1,1, 1), then 7w(a) =

(4,2), 7(b) = (3,2,1), and ¢ = sup(a,b) = (2,1) in Ly(oc) but 7(c) = (3,1)
and sup((4,2), (3,2,1)) = (3,2) in the Young lattice. Notice that there can be no

N

lattice embedding from Lpg(oco) to the Young lattice since the fact this one is a

distributive lattice would imply that Lg(oc) would be distributive, which is not
true. Finally, notice that a study similar to the one presented in this paper can
be found in [Lat01] on another kind of integer partitions, namely b-ary partitions.
The Young lattice is a particular case of the lattices introduced in this paper, and

—_—

the reader interested in the relations between Lg(00) and the Young lattice should
refer to it.

4. THE INFINITE BINARY TREE T5(00)

As shown in our procedure to construct Lg(n + 1) from Lg(n), each element
a of Lg(n + 1) is obtained from an element o’ of Lg(n) by addition of one grain:
a = a'* for some integer . We will now represent this relation by a tree where
a € Lg(n+1) is the son of o’ € Lg(n) if and only if ¢ = a’* and we label with i
the edge ' — a in this tree. We denote this tree by Tg(oc). The root of this tree
is the empty partition (). We will show two ways to find the partitions of a given
integer n in Tg(0c0), which will make it possible to give an efficient and simple
algorithm to compute them. Moreover, the recursive structure of this tree will
allow us to obtain a recursive formula for the cardinal of Lg(n) and some special
classes of partitions.

From the construction of Lg(n+1) from Lg(n), it follows that the nodes of this
tree are the elements of | | ., Lg(n), and that each node a has at least one somn,
a*', and one more if @ begins with a slippery plateau of length [: the element a¥+1.
Therefore, Tp(00) is a binary tree. We will call left son the first of two sons, and
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right son the other (if it exists). We call the level n of the tree the set of elements
of depth n. The first levels of T;p(c0) are shown in Figure 5.

-
I

1
2 1

3 2 111

4\\\31 22 211 1111

5 41 32 31\\1\\2\21 2111 11111

6 51 42 33 411 321 222 a 3111 2211 - o Sl

7 61 52 43 511 421 331322 4111 3211 2221 31111 22111 211111 1111111

FIGURE 5. The first levels of the tree Tg(oc0) (to clarify the picture,
the labels are omitted). As shown on this figure for n = 7, we will
see two ways to find the elements of Lg(n) in T(oc0) for any n.

Like in the case of Lg(oco), there are two ways to find the elements of Lg(n)
in Tg(oc0). From the construction of Lg(n + 1) from Lg(n) given above, it is
straightforward that:

Proposition 4. The level n of Tg(c0) is exactly the set of the elemens of Lg(n).

Moreover, it is obvious from the construction of Ts(cc) that the elements of the set

Lg(n+ 1)\ Lp(n) are sons of elements of Lg(n), therefore we deduce the following
proposition which can easily be proved by induction:

Proposition 5. Let x~! be the inverse of the lattice isomorphism defined in The-
orem 4. Then, the set x~'(Lp(n)) is a subtree of Tg(cc) having the same root.

This proposition makes it possible to give a simple and efficient algorithm to
compute all the partitions of a given integer n in linear time with respect to their
number. Indeed, it gives a binary tree structure to the set of all these partitions.
See Algorithm 1.

We will now give a recursive description of Tz(oc). This will allow us to obtain a
new recursive formula for |Lg(n)|, as well as for some special classes of partitions.
We first define a certain kind of subtrees of Tg(0c0). Afterwards, we show how the
whole structure of Tz(oc) can be described in terms of such subtrees.

Definition 1. We will call X}, subtree any subtree T of Tg(cc) which is rooted at

an element a = (%,...,% Ggy1,...) With agy; < i — 1 and which is either the whole
k
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Algorithm 1 Efficient computation of the partitions of an integer.

Input: An integer n

Output: The partitions of n

begin

Resu < 0;

CurrentLevel < {()};

OldLevel < (;

[+ 0;

while CurrentLevel # () do

for each e in CurrentLevel do
Compute p such that p; =e;_; foralls > 1 and p; =n — [;
Add p to Resu;

OldLevel < CurrentLevel;

CurrentLevel < 0;

[+ 1+1;

for each p in OldLevel do

Add p** to CurrentLevel;

if p begins with a slippery plateau of length | then
| Add p*+1 to CurrentLevel;

for each p in CurrentLevel do
if n — [ < p; then
| Remove p from CurrentLevel,

Return(Resu);
end

subtree of Tg(o0) rooted at a if a has only one son, or a and its left subtree if a
has two sons. Moreover, we define Xy as a simple node.

The next proposition shows that all the X, subtrees are isomorphic.

Proposition 6. A X, subtree, with k > 1, is composed by a chain of k + 1 nodes
(the rightmost chain) whose edges are labelled 1, 2, ..., k and whose i-th node is
the root of a X;_1 subtree for all 1 between 1 and k + 1. See Figure 6.

Proof. The claim is obvious for £ = 1. Indeed, in this case the root a has the form
(1,ag,...) with ap < i — 1, therefore its left son has the form (i +1,i—1,...), i.e.
it starts with a cliff, and has only one son. This son also starts with a cliff; we can
then deduce that X; is simply a chain, which is the claim for £ = 1.

Suppose now the claim proved for any ¢+ < k£ and consider the root a of a X} sub-

tree: @ = (4y...,%,ap11,...) withagy <i—1. Itsleftsonisa® = (1 +1,4,...,4, apy1, . .

&) VIR
k

with agy; < i — 1, therefore it is the root of a X, subtree. Moreover, a*' has one

)
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right son: a"¥2 = (i+1,i+1,4,...,4,ax41,...), which by definition is the root
of a X, subtree. After k¥ — 1 such stages, we obtain a*'*>+1_ which is equal to
(t+1,...,94+1,4,a541). This node is the root of a X;_; subtree and has a right

son: a*¥2-¥-1vk ge (i4+1,...,i+1 apyq,...), and we still have agy; < 7 — 1.
k

Therefore, this node is the root of a X} subtree, and from the definition of T’z (c0)
we know that it has no other son. This terminates the proof. 0

1 2 3 4 k2 k1 3 a

FIGURE 6. Self-referencing structure of X subtrees

This recursive structure and the above propositions allow us to give a compact
representation of the tree by a chain:

Theorem 7. The tree Tg(co) can be represented by the infinite chain defined as
follows: the i-th node of this chain, (1,...,1), is linked to the following node in the

i—1

chain by an edge labelled with © and is the root of a X;_1 subtree. See Figure 7.

11117 111117 1111117

LYAVAYAYAWA

FIGURE 7. Representation of Tz(c0) as a chain

Moreover, we can prove a stronger property of each subtree in this chain:

Theorem 8. The X subtree of Tg(oo) with root (1,...,1) contains exactly the
partitions of length k.

Proof. Because of their recursive structure shown in Proposition 6, X, subtrees
contain no edge with label greater than k. Therefore, if the root of a X} subtree
is of length k£ then all its nodes have length k. Moreover, no X; subtrees with
I # k and with a root of length [ can contain any node of length k. This remark,
together with Theorem 7, implies the result. n

We can now state our last result:

Theorem 9. Let c(l, k) denote the number of paths in a Xy tree originating from
the root and having length . We have:

(I, k) = 1 ifl=0o0rk=1
er Zﬁi’i”’k) c(l —1i,3) otherwise

Moreover, |Lg(n)| = ¢(n,n) and the number of partitions of n with length ezactly
kis c(n — k, k).
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Proof. The formula for ¢(l, k) is derived directly from the structure of X trees
(Proposition 6 and Figure 6). To obtain |Lg(n)|, just remark that it immediately
comes from Proposition 6 and Theorem 7 that the two subtrees obtained respec-
tively from T(oco) and X, by keeping only the nodes of depth at most n are
isomorphic. The last formula is directly derived from Theorems 7 and 8. n

5. PERSPECTIVES

The self-similarity that appears during the construction of the lattices of integer
partitions may be much more general, and should be compared with the notion of
duplications in lattices [Day92]. This could lead to the definition of a new kind
of duplications, and we would obtain this way the definition of a special class
of lattices, which contains the lattices of integer partitions. Moreover, the ideas
developped in this paper are very general and may be applied to other dynamical
models, such as Chip Firing Games [BLS91], or tilings with flips [BNRR95, R99)].
It seems for example that the distributive lattice structure of the set of all the
tilings of a figure with dominoes can be viewed as a consequence of the fact that
it can be obtained from the set of all the tilings of a smaller figure by duplication
of a part of this set.

REFERENCES

[And76] George E. Andrews. The Theory of Partitions, volume 2 of Encyclopedia of Mathe-
matics and its applications. Addison-Wesley Publishing Company, 1976.

[BLS91]  A. Bjorner, L. Lovész, and W. Shor. Chip-firing games on graphs. European Journal
of Combinatorics, 12:283-291, 1991.

[BNRR95] D. Beauquier, N. Nivat, E. Rémila, and J.M. Robson. Tiling figures of the plane with
two bars, a horizontal and a vertical one. Computational Geometry, 5:1-25, 1995.

[Bry73] T. Brylawski. The lattice of integer partitions. Discrete Mathematics, 6:210-219, 1973.

[Day92] A. Day. Doubling constructions in lattice theory. Canadian J. Math., 44:252-269,
1992.

[DP90] B.A. Davey and H.A. Priestley. Introduction to Lattices and Orders. Cambridge uni-
versity press, 1990.

[Ges93]  I.M. Gessel. Counting paths in Young’s lattice. Journal Statistical Planning and In-
ference, pages 125-134, 1993.

[Lat00] Matthieu Latapy. Generalized integer partitions, tilings of zonotopes and lat-
tices. In A.A. Mikhalev D. Krob and E.V. Mikhalev, editors, Proceedings of
the 12-th international conference Formal Power Series and Algebraic Combina-
torics (FPSAC’00), pages 256-267. Springer, June 2000. Preprint available at
http://www.liafa. jussieu.fr/"latapy/.

[Lat01] Matthieu Latapy. Partitions of an integer into powers. In Discrete Mathematics and
Theoretical Computer Science, Proceedings of the 1-st international conference Dis-
crete Models: Combinatorics, Computation, and Geometry (DM-CCG’01), pages
215-228, 2001. Preprint available at http://www.liafa.jussieu.fr/“latapy/.

[R99] Eric Rémila. The lattice structure of the set of domino tilings of a polygon. LIP -
ENS Lyon - Research Report 1999-25, 1999. To appear in DMTCS, special issue,
proceedings of ORDAL’99.

[Sta99] Richard.P. Stanley. Enumerative combinatorics, volume 2. Cambridge University
Press, 1999. Cambridge Studies in Advanced Mathematics 62.



