
Inadequacy of SIR Model to Reproduce Key
Properties of Real-world Spreading Cascades:

Experiments on a Large-scale P2P System
Daniel F. Bernardes, Matthieu Latapy, Fabien Tarissan
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Abstract—Understanding the spread of information on com-
plex networks is a key issue from a theoretical and applied
perspective. Despite the effort in developing theoretical models
for this phenomenon, gauging them with large-scale real-world
data remains an important challenge due to the scarcity of
open, extensive and detailed data. In this paper, we explain
how traces of peer-to-peer file sharing may be used to this goal.
We reconstruct the underlying social network of peers sharing
content and perform simulations on it to assess the relevance of
the standard SIR model to mimic key properties of real spreading
cascades. First we examine the impact of the network topology
on observed properties. Then we turn to the evaluation of two
heterogeneous extensions of the SIR model. Finally we improve
the social network reconstruction, introducing an affinity index
between peers, and simulate a SIR model which integrates this
new feature. We conclude that the simple, homogeneous model
is insufficient to mimic real spreading cascades. Moreover, none
of the natural extensions of the model we considered, which
take into account extra topological properties, yielded satisfying
results in our context. This raises an alert against the careless,
widespread use of this model.

I. I NTRODUCTION

Diffusion phenomena in complex networks – such as
the spread of virus on contact networks, gossip on social
networks and files in peer-to-peer (P2P) networks – have
spawned an increasing interest in recent years. The boost
of computer networks and online social network platforms
offers data and new insights on these phenomena in large
scale networks; the possibility to validate and refine current
models might lead to breakthroughs in the field.

Although large scale diffusion phenomena have always
attracted considerable interest, it has been historically
challenging to obtain open, extensive and detailed real-world
data at this level. Despite this obstacle, diffusion models
emerged, notably in epidemiology. The early models, both
discrete and continuous (see [1], [2] for a survey), focused
primarily on macroscopicaspects of diffusion – such as the
evolution of the number of infected individuals in a population
– overlooking themicroscopicdynamic of the epidemic – i.e.,
how (by whom) individuals become infected. The advent of
network analysis in various contexts has pushed for a more
detailed description of the diffusion process. Indeed, models

based on the precise interactions of individuals on a network
have blossomed in sociology [3], computer science [4] and
economics [5], among others. New epidemic models inspired
by the classical approaches featuring a detailed dynamic
description in the context of networks also appeared (see [6]
for a survey). In particular the network version of the SIR
model (henceforth called simply SIR model) and derivates
have established themselves as reference models in the study
of information diffusion [7].

In this context, we have seen theoretical developments of
these models [8], [9], focusing particularly in their asymptotic
behavior. A number of applications of such models were
also explored [10], [11], including works investigating
relevant properties of epidemic models on real networks [12].
However, as pointed out in [13], assessing the pertinence
of such models to describe real-world phenomena is critical
and empirical studies featuringreal spreading dataare
key. Since network-based epidemic models are based on
local rules of transmission which take into account the
network topology, in order to validate these models one
needs a comprehensive empirical spreading trace, consisting
of (1) detailed chronological data of who transmitted the
information to whom and (2) data describing the underlying
network on which the diffusion process takes place. In large
epidemic bursts the available data often provides the evolution
of an aggregate quantity (such as the number of touched
individuals) but rarely uncover the local trail of the epidemic
at an individual level. Data mining in computer networks
can help providing detailed information at a large scale [14],
[15], [16], [17]. In this framework, works typically feature
records of diffusion events at an individual level but lack the
complete information of the underlying network on which the
diffusion takes place – see discussion in [18]. The present
paper analyses the relevance of the SIR model for real-world
diffusions, using data obtained measuring file sharing activity
on a peer-to-peer network. Our framework allows one to take
advantage of this rich dataset to obtain both the real spreading
data (the detailed diffusion trail) and the underlying network.

This paper extends the results in [19]. It begins with a
description of our dataset and framework in section II, in



which we calculate statistics concerning peer activity and
file sharing and in which we define spreading cascades.
In section III we construct the underlying social network
of peers from the diffusion trace. In the following two
sections, we confront the SIR model and extensions to the
real data. More precisely, in section IV we simulate the
spreading of files as a standard SIR process and compare
it with the observed spreading; we also investigate the
interplay between this process and structural properties of
the underlying network where the spreading takes place. In
section V we examine the spreading pattern when we modify
the SIR model to account for heterogeneity in the behavior
of the peers and in the popularity of files. In section VI
we present a novel approach which consists in simulating
an SIR derived models on an enhanced reconstruction of
the underlying social network. This reconstructed network
is made possible using an affinity index for each couple
of peers. We conclude the paper with future work perspectives.

II. DATASET AND FRAMEWORK

The data used in this study comes from file sharing in
an eDonkey server, obtained from a measurement of eight
hours of activity (akin to [20]). In this setting, peers query
the eDonkey server indexing files and for each file they get a
list of available peers in the network possessing the requested
file. Next, peers contact potential providers directly and
transmission between them ensues. Our dataset is a collection
of answers to these queries, encoded as 4-tuples of integers
in the following format: (t, P, C, F ), where capital letters
represent unique ids (e.g. in Fig. 1). Each tuple accounts
for a query made at timet of the file F by the peerC,
satisfied by the peerP – that is,P providedF to the peer
C at time t. Let D be the set of all recorded tuples,P
the set of all peers in these tuples andF the set of all
files exchanged. In our dataset we have|P| = 1 908 500
peers,|F| = 801 280 files and|D| = 22 944 800 file transfers.

Fig. 1. Trace log example with corresponding spreading cascade in black
and underlying network in light gray.

A. File sharing

The traceD naturally induces a relationship between files
and peers (who request or provide them), which we explore de-
scriptively in this section. We begin encoding this relationship
between the disjoint sets of peersP andF files in a bipartite
graphB = (P,F ,A) as follows. Let(t, P,X, F ) ∈ D be
a recorded transmission of the fileF by the peerP to some
peerX at some timet, which we denote simply by(·, P, ·, F ).
Likewise, let (·, ·, P, F ) ∈ D be a recorded transmission of
the fileF to the peerP , provided by some peer at some time
instant. Then:

A = {(P, F ) ∈ P × F : (·, P, ·, F ) ∈ D ∨ (·, ·, P, F ) ∈ D}

In other words,B is the bipartite graph in which peers are
linked to the files which they have provided or sought. The
degree of peers and files in this bipartite graph represents
the number of files transfered by a peer and the number of
peers who shared a file, respectively. The degree distribution
of these sets inB (constructed from the P2P trace) are
plotted in Fig. 2a. In order to estimate the typical number
of interested peers per file we have computed the median
degree of files in the bipartite graph, 5, and the average
degree, 14.73, with standard deviation 34.74. Likewise, we
have calculated the same statistics for peers, to estimate the
number of files commonly shared by peers: its median degree
in the bipartite graph is 3 and the average degree is 6.19,
with corresponding standard deviation 12.66. The degree
distribution of both peers and files is however heterogeneous
and mostly concentrated on small values; all degree values
for peers and files remain below104.

Another important aspect of our P2P trace in terms of
sharing is the abundance offree-riders – that is, peers who
benefit of shared files in the system, but who do not share
back. This characteristic is well known in the P2P literature
and has been observed elsewhere [21]. In our dataset, while
most peers are clients (i.e., have requested a least one file)
only 4.33% of them have supplied files.

B. Spreading cascades

In this work we analyze thespreading cascaderepresenting
the diffusion of each file in the P2P network. For a fileF , the
spreading cascade is a directed graph featuring the setPF

of peers who have participated in the spread ofF (as clients
and/or providers) and linksP → C, connecting each client
C with the first peer(s) who providedF to it. More formally,
let τF (C) = inf{t : (t, ·, C, F ) ∈ D} be the first instantC
obtainedF and let the directed graphKF = (PF ,LF ) be the
spreading cascade ofF , with

PF = {P ∈ P : (P, F ) ∈ A}

LF = ∪C∈PF
{(P,C) ∈ PF × PF : (τF (C), P, C, F ) ∈ D}

A client requesting a file may receive a response from
potentially several providers simultaneously, which implies



(a) Complementary cumulative degree distributions
of peers and files on the bipartite graphB.
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(b) Complementary cumulative distribution of cas-
cade attributes (depth, size, number of links).

(c) Complementary cumulative distribution of the
number of initial providers in the spreading cas-
cades.

Fig. 2. Spreading statistics from the observed diffusion trace.

that nodes in the cascade graph not only have multiple
outgoing links, but also multiple incoming links in general.
The causality induced by the fact that we only consider
the links corresponding to the first time a node receivedF
prevents the appearance of cycles. Hence the cascade is in
fact a directed acyclic graph (DAG).

The first key property encoded in the spreading cascade
of a given fileF is the number of nodes who possess it at
the end of the observed period, which is given by thesizeof
the cascade|PF |. We also explore two other key topological
properties of the cascade, namely itsdepth and number of
links. The former is defined as the length of the longest path
on the cascade and captures the maximum number of hops
from peer to peer that the file has undergone before it was
relayed from a provider to a client. The number of links,
given by |LF |, combined with the size of the cascade gives
information on the sharing pattern of the network. An example
of observed trace and constructed spreading cascade is given
in Fig. 1: the spreading cascade has size7, depth3 and6 links.

From the P2P trace log we have constructed the spreading
cascades for each observed file and calculated the above
mentioned features. The distribution of these cascade features
is presented in Fig. 2b. First, we observe that the cascade
depth distribution is well fitted by a power-law. Examining
individual cascades with high depth we realize that they are
not typically big in terms of size. Second, most spreading
cascades are quite small, featuring one or few nodes and links
– these cascades are essentially trivial trees. The cascades
with higher number of links, however, display a richer
structure. In fact, the ones with the highest number of links
cannot be tree-like, since their number of links exceeds (by
far) the maximum number of nodes observed in our dataset.

C. Initial providers

Another relevant spreading data concerns theinitial
providers for each file F , namely the set of peers that

possessed it prior to any transfer activity on the observed trace.
These nodes are the origin of the spreading cascade, triggering
the diffusion of the fileF . This information can also be in-
ferred from the request log and be determined in the following
way. Let CF (t) = {C ∈ P : (t′, ·, C, F ) ∈ D, t′ < t} be the
set of peers who requestedF prior to t. We define the set of
initial providers ofF as the set of peersP who have provided
F at some timet, without having obtained it beforet from
another peer in the network:

IF = {P ∈ P : (t, P, ·, F ) ∈ D, P /∈ CF (t)}

Plotting the complementary cumulative distribution of
the number of initial providers for the spreading cascades
(Fig. 2c) we obtain an interesting curve, revealing a scale-
free distribution. This means that although most spreading
cascades in our observation have few initial providers, there
is a non negligible fraction of cascades with a large number
of initial providers.

III. SOCIAL NETWORK STRUCTURE

As discussed in the introduction, our goal is to investigate
and model spreading cascades on the social network of peers
participating in the P2P system in question. In order to
analyze the empirical spread of files among peers in the light
of detailed network diffusion models mentioned, we need
not only the detailed chronological data of who transmitted
the information to whom (observable in the trace) but also
the social network on which the diffusion takes place. As
pointed out in [18] it is challenging to reconstruct the network
on which the diffusion takes place. One strategy to unfold
this network is to explore relations among peers and their
common shared files. Such strategy was hinted in [22] and
developed more substantially in [23], [24], [19], [25]. We
follow this approach to reconstruct the underlying social
network as well.

Focusing on information content diffusion among peers,
it is natural to consider theinterest graph in which each



(a) Degree distributions on the interest graph. Superposed
curves: all peers and clients, providers and initial providers
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(b) Complementary cumulative clustering coefficient dis-
tribution in the interest graph.

Fig. 3. Interest graph statistics

node represents a peer and each edge joining two peers stand
for common interest. Interests connecting peers may include
broad subjects such as open source software, folk rock or
French literature or narrow ones such as movies by Quentin
Tarantino, a particular computer game or pictures of Beijing.
It is reasonable to suppose that peers store and share content
related to their interests and, likewise, peers will searchfor
content matching their interests. Hence the diffusion of files
among peers takes place on the interest graph and occurs
from neighbor to neighbor. Indeed, if a peerP provides
a file F (corresponding to a music album for example) to
another peerP ′ then there is link between them in the interest
graph, since both are interested in the same content, namelyF .

It is beyond doubt extremely difficult in a large scale
interaction network to know precisely whether any two in-
dividuals have a common interest. Nonetheless, it is possible
to approximate this graph using the data inD: the inferred
interest graph is given by the projectionG = (P, E) of B on
P, connecting the peers who belong to the neighborhood of a
common file in the bipartite graph, for each file:

E = {(P, P ′) ∈ P×P : ∃F ∈ F , (P, F ) ∈ A ∧ (P ′, F ) ∈ A}

See example in Fig. 4. For the sake of readability the inferred
interest graph will be henceforth called simplyinterest graph.

The interest graph obtained from the observed bipartite
graph (as explained above and in Fig. 4) has a single giant
component containing essentially all nodes(99.99%) and
density2.62 × 10−4. In Fig. 3a we have plotted the degree
distribution for the peers: considering the set of all peers, the
median degree is 118 and the mean value is 500.11, with
corresponding standard deviation of 1271.42. We proceed to
a finer analysis of the degree distribution, grouping peers in
categories (Fig. 3a). Let us consider first the set ofclients
C ∈ P such that(·, ·, C, ·) ∈ D: i.e., peers having requested
files during our measurements. Their degree distribution
superposes the degree distribution of all nodes. This is due

Fig. 4. Interest graph as a projection of the bipartite graphof peers and files
constructed from the traceD.

to the fact that99.63% of peers in our observations have
requested at least one file, so the clients degree distribution
is essentially the global degree distribution. A much more
restrictive category is the set ofproviders P such that
(·, P, ·, ·) ∈ D, i.e., peers having supplied files during
our measurements. Their degree distribution has a similar
shape, but it is concentrated on larger values, indicated
by a median of 1821 and an average degree of 2906.54 –
with corresponding standard deviation of 3471.80. The last
curve, superposing the curve corresponding to the providers,
represents the degree distribution of the initial providers.
We have also calculated the clustering coefficient [26] of
the peers in the interest graph (Fig. 3b): we observe a wide
range of clustering values, each represented by a significant
fraction of peers. Also, the distribution shows a relatively
high fraction of peers with a high clustering coefficient –
which is a feature of real complex networks, in contrast to
random graphs.

We close this section with a brief summary: using the
introduced framework, we were able to infer the interest
graph of peers, on which the spreading of files takes place.
This graph connects essentially all peers, which can be
grouped in two categories: providers and clients. Most peers



in our observations are clients, but only a small fraction
supply files and there is a sharp distinction between clients
and providers in terms of their degree distribution.

IV. SIMPLE SIR MODEL

As mentioned in the introduction, we have decided to
investigate the file spreading in the light of the simple SIR
model. In our setting, each file spreading corresponds to an
independent epidemic in the interest graph, in which each
node is in one of the following states:susceptible, infected
or non-interacting (sometimes denotedremoved, hence the
acronym SIR). Susceptible nodes do not possess the file and
may receive it from an infected node, thus becoming infected.
Each infected node, in turn, spreads the file to each of its
neighbors, independently, with probabilityp and becomes
promptly non-interacting thereafter. Although non-interacting
nodes remain in this state, infected nodes may unsuccessfully
try to infect them sending the file.

Supposing the observed diffusion trace was the result of
such a simple SIR epidemic we may estimate the spreading
parameterp. Each neighbor-to-neighbor transmission trial can
be seen as a Bernoulli random variable, whose value is1 in
case of success and0 otherwise and whose expected value
is p. Assuming each trial is independent and the parameter
p is homogeneous for eachP and F , we may estimate it
by the empirical proportion of successes over all trials. Since
each tuple inD accounts for a successful neighbor-to-neighbor
transmission,|D| is the number of successful trials for all
diffusion cascades. The total number of trials, in turn, is
given by the sum of the degrees of all nodes involved in
the spreading of each file. Hence, we obtain the following
estimate, with a95% confidence interval̂p± 10−6:

p̂ = |D| /
∑

F∈F

∑

P∈PF

d(P ) = 1.063× 10−3

Since the simple SIR model depends upon a single
parameter, namely the spreading probabilityp, we have fully
characterized it with the preceding estimation.

A. The underlying network influence

The goal of simulating the standard SIR model and
comparing the simulated cascades with the observed ones is
primarily to assess how realistic this model would perform
on the interest graph, in terms of size, depth and number of
links of the spreading cascades. Note that by realistic, we
mean able to reproduce the characteristics of the data. Indeed,
although the data used in this study can be partial and/or
biased, the present work is independent from the quality
of the data itself. Indeed, the problem of improving the
measurement process is different from the one of identifying
relevant models able to exploit the features observed in the
data, which is the focus of this paper. This means that when
we further show the ability of the models to reproduce (or

not) the characteristics of real traces, it has to be understood
as the ability of reproducing the characteristics asobserved
in the data, with their flaws. Another approach is to apply
detection techniques (such as [27]) in order to remove
abnormal events from the raw data before using the modeling
techniques presented in this paper. Although it could improve
the quality of the data, it would at the same time obfuscate
our conclusions as it adds another step which interferes in
the analysis process. Thus, promising as it seems, we leave
this approach for a further study.

Secondly, we wish to compare the results with simulations
on random networks to understand the role of the network
topological structure on the shape of the spreading cascades
generated with the SIR model. With this aim, we have consid-
ered the spreading of files in a sequence of random networks
derived from the interest graph, with increasing topological
complexity (Fig. 5). More precisely we begin considering an
Erdös-Ŕenyi (ER) random graph with the same density as our
interest graph, the simplest random graph in our sequence.
Then we have chosen a random graph with the same density
and degree distribution using the Configuration Model (CM)
approach [8]. Next we have generated a random bipartite
graph, with the same density and degree distribution as our
original bipartite graphB of peers and files [28]. Compared to
the interest graph, the projection of this random bipartitegraph
(RB) has similar density, degree distribution and clustering
coefficient. In sum, for each new element of this sequence
of (uniformly chosen) random graphs we introduce a new
constraint to make it more realistic – in the sense that its
topological properties will be closer to the interest graph.

Fig. 5. Increasingly realistic random graphs derived from the interest graph.

B. File spreading simulation

Combining the network topology, the initial condition
information (the list of initial providersIF calculated for
each fileF ) and the calibrated spreading parameterp̂ we can
proceed to the simulations for each underlying network: for
eachF , we begin with the initial providers in an infected
state and the other nodes in a susceptible state. At each
step, infected nodes will infect each of its neighbors with
probability p̂, becoming non-interacting afterwards. The
epidemic continues as long as there are active infected nodes.

The first observation concerning the model simulation
is that the observed time (measured in seconds) has no
direct relation with the simulation time (number of steps).
Furthermore, our dataset corresponds to an observation in
a bounded window of time of eight hours, so that we have
no reason to suppose that the file spreading cascades we
observe correspond to the whole spreading cascade of a file.



In other words, if we had measured a longer time window we
would likely observe bigger cascades (in terms of size and
depth) for the same files – due to, among other reasons, new
users who could eventually request the same files. This is
also true for our SIR model: we observe increasingly bigger
cascades as time increases. In fact, performing unconstrained
simulations we have obtained a distribution of significantly
bigger cascades than the ones we have observed in the real
trace. Thus, in order to perform a suitable comparison with
the observed cascades, we have decided to hold one property
fixed and compare the other properties. More precisely, for
each file we generate a simulated cascade with the same
size (resp. depth) as the corresponding observed cascade
and compare the depth (resp. size) and number of links.
In practice, for each file we simulate the SIR epidemic as
described earlier and halt it when it reaches the size (resp.
depth) of the corresponding observed cascade.

We have generated populations of simulated cascades for
each underlying network and constraint (on depth and size).
We have performed801 280 file spreading simulations (one
for each file inF) for each network and have selected every
simulated file spreading cascade which attained the depth
(resp. size) of the real spreading cascade for the same file –
and have rejected the others for purpose of comparison. With
this procedure, each underlying network yields a different
population of file spreading cascades, since the rejected
cascades may be different in each case. However93.80% of
the files have generated simulated cascades with the same
depth as the corresponding real cascades, for all networks.
Similarly, 85.64% of the files have generated simulated
cascades with the same size as the corresponding real
cascades, for all networks – except the ER network. Indeed,
only 21.76% of the files have generated the contemplated size
in the ER graph. Furthermore the properties of these simulated
cascades on the ER graph deviated significantly from the
properties of the cascades on the other graphs. Hence, in the
following analysis we do not include the simulations for the
ER graph. Rather, we focus on the properties of the files
with comparable spreading cascade depth (resp. size) on all
networks but ER.

In Fig. 6a we plotted the complementary cumulative
distribution of the size of cascades with comparable depth.
We observe a divergence of the cascade size from the observed
cascades: simulated cascades are typically much bigger in
size for a given depth compared to real cascades. The range
of values in both categories is also striking: the biggest real
cascade is at least two orders of magnitude smaller than the
biggest simulated ones. Among the simulated cascades, there
is a remarkable matching in size values for the simulation
on the CM and the interest graph (curves are superposed). In
Fig. 6c we plot the complementary cumulative distribution of
the depth of cascades with fixed size. Real cascades feature a
much higher depth compared to simulations, holding cascade
size constant. In particular there is a cutoff on the cascade

depth for the simulations: we do not observe any cascade
depth bigger than 11 in the simulations. As for the number
of links, we have two interesting situations. If we fix the
depth (Fig. 6b) the number of links distribution resembles
closely the size distribution (Fig. 6a). This is not completely
surprising, since the two quantities are related. In this case we
observe a larger number of links for all simulations compared
to the number of links in the real cascades since the simulated
cascades themselves are bigger. If, in contrast, we fix the
cascade size to fit the observed cascades size (Fig. 6d), we
observe a typically smaller number of links. Combining these
observations on both plots we conclude that real spreading
cascades are denser than simulated ones, a clear qualitative
feature not captured by the simple SIR model. Finally we
note that most cascades are simple, featuring depth equal to
one and correspondingly small size.

To sum up, we have compared simple topological properties
of real spreading cascades and simulated cascades from a
calibrated SIR model, with comparable depth and size. We
have observed that simulated cascades are relatively “wider”
whereas real cascades are relatively “elongated”, that is,
real cascades have a smaller size per depth ratio. Moreover,
real cascades are typically denser than simulated ones. In
terms of interplay between underlying network structure and
the simple SIR spreading cascades, we have observed that
respecting the interest graph degree distribution was the only
property that caused a striking change in simulations behavior
on the considered random networks. Indeed we have observed
sharp qualitative dissimilarities between the simulations on
the ER graph (different degree distribution) and no sensible
dissimilarities between the simulations on the CM, RB and
the interest graphs.

V. HETEROGENEOUSSIR MODELS

In the previous section we have examined the adequacy of
the simple SIR model to generate verisimilar file spreading
cascades. We have also inspected the interplay between the
underlying network and the model simulating file spreading
in different networks. Given the generality and simplicityof
the homogeneous model it is not entirely surprising that it
does not capture key properties of real spreading cascades
in our data. In order to fairly assess the relevance of the
SIR model in our context, in this section we consider natural
extensions of the SIR model considered previously, which
take into account heterogeneous aspects found in the observed
data. More precisely, we perform a complementary analysis,
focusing on a single underlying network (the interest graph)
and examining two heterogeneous versions of the SIR model,
characterized by a distribution of spreading probabilities,
instead of a single homogeneous parameter. These models
take into account the file popularity and peer behavior
heterogeneity and are, thus, presumably better equipped to
mimic real spreading cascades.



(a) Size of cascades with fixed depth. Curves corresponding to
the interest graph and CM superposed.

(b) Number of links of cascades with fixed depth. Curves
corresponding to the interest graph and CM superposed.

(c) Depth of cascades with fixed size. (d) Number of links of cascades with fixed size. Curves corre-
sponding to the interest graph, RB and CM superposed.

Fig. 6. Simulation of file spreading on different underlying networks: complementary cumulative distribution of cascade properties

A. File popularity

A first refinement of the simple SIR model consists in
introducing different spreading probabilities accordingto the
file being spread. The rationale in this case is to account for
different levels of popularity depending on the file. Exogenous
reasons – such as a movie release or the death of an artist
– can change the supply and demand of a given file and
consequently alter its spreading probability. If we know the
spreading probabilities for each file, i.e.,{p(F ) : F ∈ F}, the
knowledge of the actual reasons that explain the heterogeneity
in file popularity are irrelevant to the characterization ofthis
model. An estimate of these probabilities, in turn, can be
obtained from the traceD if we suppose it was generated by
a process following this extended SIR model. Indeed, since
each file spreading is independent of the others, it is possible
to estimatep(F ) for eachF separately, with the same method
used to derive the homogeneous parameter. Restricting the
calculations to the spreading cascade ofF , p̂(F ) will be given
by the empirical proportion of successful transmissions ofF

over all possible transmissions ofF :

p̂(F ) = |{(·, ·, ·, F ) ∈ D}| /
∑

P∈PF

d(P )

In Fig. 7a we plot the distribution of the heterogeneous
spreading parameters depending on the files. The values of
p̂ are concentrated on the range10−5 to 10−2, indicating
that there is a considerable fraction of cascades with a
significantly different spreading regime (bigger than one
order of magnitude). This distribution characterizes the
extended SIR model we use in the following simulations.

B. Peer behavior

A second possible refinement is motivated by the fact that
peers might have intrinsically distinct levels of “generosity”
regarding file sharing. Under this hypothesis we extend the
standard SIR model assigning an heterogeneous spreading
probability to each peer, regardless of which file it is sharing.
Thus, we do not need any other information but the spreading
probability distribution to characterize the model. In this



context altruistic peers, who typically spread files to a large
proportion of their neighbors, would feature a bigger spreading
probability compared to the homogeneous spreading probabil-
ity corresponding to the diffusion aggregates of all peers.By
the same token, the extreme case of free-riders would have
their spreading probability assigned to zero. Again we can
study transmissions as outcomes of Bernoulli trials to estimate
the spreading probabilities. LetFP = {F ∈ F : (P, F ) ∈ A}
be the files carried by the peerP ; for each such file the
number of transmission trialsP could perform corresponds to
its degree in the interest graph, namelyd(P ). Hence, to obtain
p̂(P ) for each peerP we divide the number of successful
transmissions ofP to other peers (of any file carried byP )
over the total number of potential trials:

p̂(P ) =
|{(·, P, ·, ·) ∈ D}|

|FP | × d(P )

We have plotted the distribution of the positive spreading
probabilities estimates in this case (Fig. 7b). They account
for small fraction of all the peers, since the only peers who
have a positive spreading probability are those who provided
a file at least once – namely4.33% cf. observations made in
section II. Conversely, a large fraction of the peers do not
share the file in this model. We observe a marked range of
values, which is significantly greater than the one calculated
for the homogeneous SIR.

(a) Depending on the files (b) Depending on the peers

Fig. 7. Heterogeneous spreading parameter distributions

Our aim is to generate simulated cascades following both
extensions of the SIR model presented – with heterogeneous
spreading probability depending on the files and on the peers
– and compare their properties with simulated cascades of
the simple SIR model and the real observed cascades. In
this sense, we apply the same methodology as in previous
simulations: we fix the depth (resp. size) for the simulated
cascades and examine the other two properties – the idea is
to compare similar spreading cascades in terms of the chosen
property. As discussed previously, the great majority of the
cascades is simple, with depth equal to one and a small size.
Hence the simulated cascades corresponding to the simple
observed cascades will likely correspond in terms of depth,
size and number of links. For this reason, we have decided
in this section to focus on the spreading cascades with depth

greater than one.

The simulation results are plotted in Fig. 8: we have plotted
the complementary cumulative distributions of the spreading
cascade depth, size and number of links. Imposing a constrain
on the depth for the simulated cascades and comparing
their size (Fig. 8a) we observe the contrast between the
simulated and the real observed cascades with the same
depth: the former have a typically bigger size compared to
latter. What is remarkable, however, is the agreement among
all the simulated cascade distributions – curves superposed
in Fig. 8a. Next, if we fix the size for the simulated cascades
and examine their depth (Fig. 8c), we are faced with the same
qualitative similarity among simulated curves. Indeed, the
curves corresponding to the heterogeneous SIR models also
feature a cutoff in depth, failing to reproduce the scale-free
curve representing the depth of the observed real cascades.
Finally, the cascade links distribution plotted in Fig. 8b and
Fig. 8d reveals the pattern observed previously, namely that
the observed spreading cascades are typically denser than
corresponding simulated cascades.

In spite of the improvements in the SIR model, introducing
an heterogeneous spreading parameter to account for different
profile of files (respectively peers), simulations indicate
that this refinement does not change qualitatively the basic
properties of simulated spreading cascades. Indeed we
observe a surprising similarity between the three SIR models
compared, notwithstanding the particularities of each model.

VI. W EIGHTED INTEREST GRAPH

In the previous section we have examined SIR model
extensions that take into account heterogeneous aspects of
peers and files with the goal of generating more realistic
spreading cascades. Another approach is to keep the simple
SIR model and enrich the social network inference. In this
section we will address this question, proposing a way to
refine the interest graph taking into account thedegree of
interest among peers. In other words, we propose a method
to quantify the interest affinity among peers. The rationale
is that peers will be more likely to interact with other peers
with whom they have greater affinity.

A. File spreading simulation

In concrete terms, our affinity score between two peers will
be defined by the number of common files peers shared or
provided. Indeed, instead of approximating the interest graph
by the simple projection ofB on P, we consider a richer
inferred interest graphG = (P, E ,W), given by theweighted
projection ofB on P such that

E = {(P, P ′) ∈ P ×P : ∃F ∈ F , (P, F ) ∈ A∧ (P ′, F ) ∈ A}

W(P, P ′) = |{F ∈ F : (P, F ) ∈ A ∧ (P ′, F ) ∈ A}|



(a) Size of cascades with fixed depth. Curves corresponding to
the simulations are superposed.

(b) Number of links of cascades with fixed depth. Curves
corresponding to the simulations are superposed.

(c) Depth of cascades with fixed size. (d) Number of links of cascades with fixed size. Curves corre-
sponding to the simulations are superposed.

Fig. 8. Simulation of file spreading on the interest graph withdifferent SIR processes: complementary cumulative distribution of cascade properties

In other words, peers belonging to the neighborhood of a
common file inB are connected inG. If a peerP provides
a file F (corresponding to a music album for example) to
another peerP ′, then there is a link between them in the
interest graph since both are interested in the same content,
namely F . Furthermore, each edge(P, P ′) ∈ E has an
integer weight given by the number of common files they
have manifested interest in. In Fig. 9a we have plotted
the distribution of weight values in the interest graph: it is
heterogeneous, with weights ranging from 1 to 303 and such
that the vast majority of edges feature small weights. Finally,
note that the weight scheme we have introduced is by no
means the only way to assign an affinity index to each edge
of the interest graph. One could assign a greater affinity
to two peers who are both interested in “rarer” files than
two peers interested to “common” files for instance; another
possibility is the Jaccard index of similarity. That said, our
choice is quite natural and is motivated by the hypothesis
that peers will likely spread files to the neighbors with whom
they have greater affinity, as we explain below.

B. Diffusion models

The diffusion models we have used so far require
adaptation to take into account the enhanced network
topology. We keep the main hypotheses of the SIR model,
that is, that each individual is in one of the following
states: susceptible, infected or non-interacting (sometimes
denotedremoved). Susceptible nodes do not possess the file
and may receive it from an infected node, thus becoming
infected. Infected nodes, in turn, try to spread the file to
each of its neighbors, independently, and become promptly
non-interacting thereafter. Each infection attempt from an
infected nodeP to the nodeP ′ is successful with probability
σ(w) ∈ [0, 1], depending on the weightw of the edge
connectingP andP ′.

It is reasonable to suppose that a peerP will be more
successful in spreading a file to the neighbors with whom
he or she has a greater common interest. In terms of the
spreading probabilityσ, this assumption translates itself as
supposingσ(w) is increasing withw. Indeed, the weight
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Fig. 9. The interest graph connects peers who share common interests and attributes a weight between this connection proportionally to the the overlap
among their interests. Some peers have several common interestswith others, but most peers have few shared interests. Contagion spreads best among peers
with stronger connection.

connectingP and its neighbors is a measure of how similar
are their interests. Hence the more similar two peers are in
terms of interest, the greater the weight of the edge connecting
them and, in turn, the greater the spreading probability. To
verify this hypothesis we have estimated the value ofσ(w)
for each value ofw, adapting estimation methods used in
sections IV, V. Each observed spreading cascade of a file
F in the trace provides a set of estimated values{σ̂F (w)}:
as expected, we have found that the median values ofσ̂
are increasing withw up to w = 25 (with the exception of
two values), after which they essentially reach a plateau at
σ̂(w) = 0.5. In Fig. 9 (right) we have plotted the estimator
values for all weights from 1 to 25 in terms of box plots.

Following the approach in [29], we have used a linear
function to model the spreading probability on the weighted
graph, namelyσ1(w) = a1w+ b1, with a1 = 3.07×10−3 and
b1 = 1.54 × 10−3 obtained with a least squares calibration.
The number of edges with small weights is much greater
than the number of edges with big weights in this graph – cf.
Fig. 9a. Indeed we observe a greater number of transmissions
between peers connected by edges with smaller weight.
Hence, the quality of the estimators is greater for small values
of w and we have taken into account primarily these values in
this model. We have also examined an alternative model for
σ, which captures qualitatively the stagnation ofσ for large
values ofw. In this case we haveσ2(w) = a2 log(w) + b2
with a2 = 14.10× 10−3 andb2 = 0.58× 10−3 obtained with
the same calibration method.

C. File spreading simulation

Equipped with the reconstructed social network of peers
(the weighted interest graph) and models for the diffusion of
files (described above) we have simulated the spreading of all
the files and compared the corresponding spreading cascades
with the real, observed, spreading cascades. Simulated traces

corresponding to the spreading of each fileF ∈ F contains
the same number of transfers as the real observed trace ofF .

In Fig. 10 we have plotted the complementary cumulative
distributions of cascade properties from real cascades,
compared to the simulated cascades using the diffusion
models described above. The first general remark is that
simulated cascades generated by both models are quite
similar in terms of these metrics. Indeed, the curves of both
simulations are superposed for the three plots. Compared
to the distribution of real cascades, the sharpest contrastis
in terms of depth: the distribution for simulated cascades
features only small values of depth, whereas the depth
distribution for real cascades is remarkably scale-free. We
also find a discrepancy between simulated and real cascades
in terms of size and number of links: in the former the gap
is sharper and in the latter both distributions follow globally
the same trend. Considered together the curves make clear
that these models face a challenge to capture key topological
properties simultaneously. Indeed, real cascades have a shape
closer to chain-email cascades [30], in the sense that they are
relatively elongated compared to simulated cascades obtained
with these contagion models.

VII. C ONCLUSION AND PERSPECTIVES

We have presented a large-scale dataset from a real-world
peer-to-peer network, featuring diffusion of files among peers.
We have proposed a framework to study this dataset which
allows us to obtain, simultaneously, the interest graph of
peers – where the diffusion of content takes place – and the
spreading cascade. Guided by simulations we have examined
spreading cascades generated by the simple SIR model and
have analyzed the interplay between this model and the
network topology. We concluded that simulated file diffusions
do not capture key qualitative properties of the observed
spreading cascades. Furthermore, in terms of the studied
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Fig. 10. Spreading cascades profile in terms of: depth, size and number of links respectively. Both models yielded the same cascades profile (simulation
curves superposed), contrasting with real spreading cascades in terms of depth.

properties, the simple SIR model generates similar cascades
on random networks having the same degree distribution as
the interest graph. We have also found that the addition of a
clustering coefficient constraint on the random graph did not
change the properties of the spreading cascade qualitatively.

The SIR model is an attractive choice to model the
information spreading in complex networks: it was inspired
by classical epidemiological models, it is based upon few
assumptions and it can be characterized with few parameters.
This flexibility and simplicity explain its popularity as
a contagion model, but these characteristics are also its
weakness when used in specific contexts. In this sense, the
results of section IV, mentioned above, are not entirely
surprising. What is surprising, though, is that simulated
cascades from extensions of the SIR model (which take
into account the heterogeneity in file popularity and peer
behavior) show similar properties as the simple homogeneous
SIR model. In addition to these extensions, we have enriched
the reconstruction of the interest graph, introducing a measure
of affinity among peers. Again, simulations reveal another
unexpected point: despite the enhanced social network
topology, the model simulations did not reproduce qualitative
features of real spreading cascades.

In sum, these results suggest that this model is not suited
to describe information spreading in our context. That is,
not even the natural extensions of this model, related to key
observed features of real spreading cascades, offer a better
alternative in terms of the properties we have investigated.
It is evidently hard to demonstrate that there is no possible
modification of this model capable of describing file spreading
cascade profiles in P2P systems, but our results show that this
model is unlikely to describe spreading cascades generally,
as it is commonly taken for granted. In this sense, our work
raises a cautionary message against the careless, widespread
use of this model.

Although the spreading cascade modelling seems to be

more context-dependent than currently thought, the precise
role of context in the choice of model and its parameters
remains open. In our case, we have focused primarily on
the interplay between the diffusion process and the network
structure and have neglected other potentially important
aspects in this context. Two aspects in particular could
explain why SIR-based models fail to reproduce the profile
of spreading cascades.

The first one concerns the time, which is not directly
addressed in such models except from a logical point of
view. This aspect is however strongly related to the order in
which the underlying graph is explored during a contagion.
The logical nature of the time adopted here is similar to
a breadth-first-search exploration which yields short depth
structures. This explains particularly the inadequacy observed
when the depth is involved in the evaluation of the model,
such as in Fig. 6a, Fig. 6c, Fig. 8a, Fig. 8c, and Fig. 10a. In
contrast, figures corresponding to size and number of links
show a clear improvement of the model efficiency. Thus, it
seems very promising to exploit more deeply the temporal
information in our dataset. One possible way would be to
take into account the dynamic aspect of the social network by
filtering the interest graph with pairs of peers that have been
present at the same time in the network. Another way would
be to incorporate time-related behavior to the contagion
dynamics, that is to add a new features in the model itself
that account for such temporal patterns. Though promising,
we leave such approaches for further studies.

The second aspect, which is by far more fundamental as
it questions the nature of the model itself, relies on the fact
that epidemic models are based on“push” dynamics whereas
peers in P2P systems tend to“pull” content from each others.
This might call for a fundamental perspective change on the
dynamics of the process. In particular, adoption/threshold
models [13], [3] could be more pertinent in this case: we also
plan to evaluate this possibility in the future.
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