
Towards realistic modeling of IP-level routing
topology dynamics
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Plusieurs travaux ont déjà étudié la topologie de l’Internet, mais peu ont cherché à comprendre comment celle-ci
évoluait dans le temps. Ce papier se focalise sur la dynamique de la topologie de l’Internet au niveau IP. Nous analysons
plusieurs mesures périodiques constituées de différents arbres de routage collectés à partir d’un unique moniteur vers un
ensemble fixe de destinations et identifions des caractéristiques invariantes de leur dynamique. Nous proposons ensuite
un modèle simple pour les mécanismes sous-jacents de la dynamique de la topologie de routage. Nos simulations
montrent que le modèle proposé capture effectivement les caractéristiques dynamiques observées. Ceci fournit des
informations pertinentes sur les mécanismes importants qui gouvernent la dynamique du routage sur Internet.

1 Introduction
Studying the structure of the Internet topology is an important and difficult question. No official map
being available, researchers have to conduct costly measurement campaigns, and deal with the fact that the
obtained data can be biased [LBCX03]. Studying the dynamics of this topology is therefore an equally
hard, if not harder, problem.

In this paper, we use an orthogonal approach to obtain insights on the dynamics of the routing topology
observed at the IP-level. We study ego-centered views of this topology. Given a monitor and a fixed set of
destination nodes, one such view is obtained by measuring the routes from the monitor to the destinations.
This can be performed quickly and with low network load with the tracetree tool [LMO08]. Repeating
this measurement periodically therefore allows to study the dynamics of this view.

Previous work has shown that ego-centered views exhibit strong dynamics, and in particular that the set
of observed nodes evolves much more quickly than what was previously expected [MOVL09]. Here, we
first analyze in depth these dynamics (Sec. 2). We then rely on simulations to understand the factors behind
them and to study their influence. We propose in Sec. 3 a baseline model for the routing dynamics in the
Internet that incorporate routing modifications and load balancing. We use the most simple choices for
modeling these two factors, and show in Sec. 4 that this model is able to accurately reproduce the behaviors
observed in real data. This shows that simple mechanisms such as the ones we take into account play a key
role in the Internet routing topology dynamics, giving a strong explanatory value to our model. As such, it
represents a significant first step towards the modeling of the Internet IP-level topology and its dynamics.

2 IP routing topology dynamics
The tracetree tool [LMO08] collects the ego-centered view from a given monitor to a given set of
destinations by measuring the routes from this monitor to each destination. This corresponds to a subset of
the routing topology, in which nodes are the IP-addresses of routers, and a link exists between two nodes if
the corresponding routers are connected at the IP level. Note that the routing topology is different from the
physical topology, as two routers may be physically connected by a link that is not used for routing. Running
the tracetree tool periodically allows to capture the dynamics of ego-centered views. We collected two
datasets in this way. The first one, woolthorpe, was collected from a monitor in University Pierre and
Marie Curie towards a set of 3,000 destinations. The frequency is of one measurement round every 15 min
approximately. It started in Dec., 2010 and ended in Jun., 2011, which represents a total of 17,450 rounds.
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(a) Number of distinct IP addresses observed since
measurement beginning.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  1000  2000  3000  4000  5000  6000

B
lo

c
k
 N

u
m

b
e

r

Observation Number

(b) Observation number vs. block number.

Figure 1: Properties of the observed dynamics.

The second one, ovh, was collected from a French server hosting company. Only 500 destinations were
used, thus allowing to increase the frequency to one round every 90 seconds approximately. It started in
Oct., 2010 and ended in Sep., 2011, with a total of 318,000 rounds. In both cases, the destinations were
chosen by sampling random IP addresses that answered to a ping at the time of the list creation †. These
datasets are publicly available [Rad]. We present below the main characteristics of their dynamics.

Discovery of new IP addresses. A previous study has shown that these measurements continuously dis-
cover new IP addresses that had never been observed before, at a significant rate [MOVL09]. These ob-
servations were made on two-months-long measurements. Fig. 1(a) shows that it is also true for very long
measurements. It presents the number of IP addresses observed since the beginning of the measurement. A
dot (x,y) in this figure means that y different addresses have been observed at least once before time x. We
see that, after an initial fast growth, the plot increases significantly for extended periods of time.

Stability of IP addresses. We compute two quantities for each IP address. Its observation number is
simply the number of distinct rounds it was observed in. Its block number is the number of groups of
consecutive rounds in which it is observed. For example, an IP address observed on rounds 1, 3, 4, 7, 8, 9,
and 10 has an observation number of 7 and a block number of 3. Fig. 1(b) presents the correlation between
these quantities for the woolthorpe dataset. The plot presents a clear parabolic shape, with a large
number of points close to the x-axis and to the line y = x/2. The presence of a large number of IP addresses
close to the parabola can be explained by load-balancing routers. If a load-balancing router randomly
spreads traffic among k paths ‡, each router belonging to any of these paths has a probability p = 1/k of
being observed at each round, leading to an observation number equal to rp approximately (r being the total
number of measurement rounds). A given round is then the first of a consecutive block of observations for
one of these routers with the probability p that it was observed in this round, multiplied by the probability
1− p that it was not observed in the previous round. Multiplying this probability by r gives the expected
block number, which is then equal to rp(1− p) and is the equation of the parabola. IP addresses close to
the x-axis are mainly observed during blocks of consecutive rounds, with few interruptions. Points close
to the line y = x/2 correspond to addresses that are observed only during finite part of the measurement,
and have during that time a probability p = 1/2 of being observed, due to load balancing: an IP address,
observed with p = 1/2 during k rounds, has an observation number of x = k/2, and a block number of
y = k(1/2)2 = x/2.

3 Model
Our purpose here is to propose relevant and simple mechanisms that reproduce the observations made in
the previous section. We do not aim at proposing a realistic model, but rather at providing a first and
significant step towards understanding the impact of simple mechanisms on the observed dynamics. This
model incorporates four ingredients: the routing topology, the routes from the monitor to the destinations in
this topology, load balancing, and routing modifications. For modeling each ingredient, we try to make the
simplest choice possible, our goal being to obtain a baseline model which makes it possible to investigate
the role of each component, and to which future and more realistic models should be compared.

† Previous work has indeed shown that tracing routes to unused IP addresses can introduce measurement artifacts.
‡ It has been shown [ACO+08] that per-packet or per-flow load-balancing routers spread traceroute probes equally among all

paths to the destination, which is roughly equivalent to randomly choosing a path.
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Figure 2: Node discovery for s = 10 (n = 500,000, m =
1,000,000, d = 3,000).
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Figure 3: Observation number vs. block number for s =
10 (n = 500,000, m = 1,000,000, d = 3,000).

First, we represent the routing topology by a random graph obtained with the Erdös-Rényi model [ER59],
which makes no hypothesis on the structure of the graph and is therefore the simplest model possible§

Given the graph, we assume that the route between the monitor and a destination is a shortest path obtained
by performing a breadth-first search (BFS). To simulate load balancing, the neighbors of each node are
considered in a random order, which we call a random BFS. Second, we use a simple approach based on
link rewiring, or swap, to model changes in the routing topology. It consists in choosing uniformly at
random two links (u,v) and (x,y) and swap their extremities, i.e. replace them by (u,y) and (x,v).

Finally, our simulation setup consists in the following. First, we generate a random graph G1. From
G1, we randomly select one node as the monitor and d nodes as the destinations. We then simulate r
measurement rounds by iterating the following steps: (1) extract a routing tree Ti from Gi (i ∈ [1..r]) by
performing a random BFS from the monitor towards the destinations; (2) modify the graph Gi by performing
s random swaps, which produces the graph Gi+1 (s is a parameter of the model). This generates a series of
r trees T1,T2, . . . ,Tr that simulates periodic tracetree measurements.

4 Results
This section shows that our model is relevant to explain the dynamic properties presented in Sec. 2.

Node discovery. We first examine whether the simulations reproduce the evolution of the number of
distinct nodes observed over time. Fig. 2 presents such an analysis on a graph with n = 500,000 nodes,
m = 1,000,000 links, d = 3,000 and s = 10. It shows a similar behavior to the one we observed in real data
(see Fig. 1(a)). In particular, the curve presents clearly a fast initial growth and then a linear progression.
Note that we performed several simulations with varying parameter values and obtained similar results.

Observation number vs. block number. Using the same parameters, we then study the correlation
between the observation number and block number (see Fig. 3). The main invariants observed in Fig. 1(b)
are reproduced: the parabola, the y = x/2 line and a dense strip close to the x-axis¶. As already explained
in Sec. 2, the line y = x/2 corresponds to nodes that are observed with probability p = 1/2 for a given
duration, and are not observed before or after. There is also a high density of nodes on a line with equation
y = (r− x)/2, r being the total number of rounds performed. Similarly, it corresponds to nodes which are
observed with probability p = 1/2 for a given duration, and are observed at all rounds before and after that.
This line is also present in Fig. 1(b), although not as clearly as here.

Impact of simulation parameters. We also analyze the impact of the simulation parameters on the dy-
namic properties. In particular, we find that the slope of the node discovery curves increases with the
number of swaps s. When the graph does not evolve (s = 0), there is an initial growth in which all shortest
paths are explored, then the curve becomes flat. This confirms that the constant discovery of new IP ad-
dresses in real data may stem from route dynamics. When route dynamics are very high (e.g., s = 10,000
for n = 500,000, m = 1,000,000 and d = 3,000), almost all nodes are quickly discovered: there are so
many changes of the topology that eventually all nodes will appear at some point on a shortest path.

Concerning the second property, it appears that only the parabola is present when no route dynamics
are simulated (s = 0), thus confirming that this phenomenon observed in real data is probably due to load

§ Simulations with power-law random graphs are also available [MMT12]. They show qualitatively similar results as here.
¶ Note that 20% of all points correspond to y = 1.
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balancing mechanisms which are well captured by the random BFS model. At the opposite, when the
number of swaps s increases, route dynamics get the better of load balancing and the parabola tends to
vanish.
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Figure 4: Relation between links and swaps (n = 500,000,
d = 3,000).

Relations between parameters. In order to fur-
ther study the parameter ranges which allow to re-
produce the invariants, we also vary several simu-
lation parameters at the same time. Fig. 4 presents
the relation between the number of swaps and the
number of links for n = 500,000 and d = 3,000.
We first observe that, for a given number of swaps,
the larger the number of links, the smaller the slope
of the corresponding curve. This comes from the
fact that, when the number of links increases, a
smaller fraction of them is affected by swaps. Second, different curves with a same ratio s/m will have
the same slope. We can observe this in the two middle curves. Note the sharp increase in one of them close
to x = 2,000. It is probably caused by a swap happening very close to the monitor, which therefore affects
a larger part of the paths than usual. Yet, this does not affect the slope after such an event.

5 Conclusion
In this work we conducted periodic measurements of ego-centered views of the Internet topology and iso-
lated two main characteristics of their dynamics. We then proposed a model for the topology dynamics,
which integrates simple ingredients such as load balancing and routing changes. This model is not suitable
for generating realistic time-evolving topologies; in particular new IP addresses never appear. However, it
captures the main characteristics of the observed ego-centered views, which shows that the factors it mimics
play a strong role in the Internet routing topology dynamics. We therefore consider our model as a key step
towards the realistic modeling of the Internet topology dynamics, as well as towards its understanding.
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