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Abstract. Automatic detection of relevant groups of nodes in large
real-world graphs, i.e. community detection, has applications in many
fields and has received a lot of attention in the last twenty years. The
most popular method designed to find overlapping communities (where a
node can belong to several communities) is perhaps the clique percolation
method (cpm). This method formalizes the notion of community as a
maximal union of k-cliques that can be reached from each other through
a series of adjacent k-cliques, where two cliques are adjacent if and only
if they overlap on k − 1 nodes. Despite much effort cpm has not been
scalable to large graphs for medium values of k.
Recent work has shown that it is possible to efficiently list all k-cliques
in very large real-world graphs for medium values of k. We build on top
of this work and scale up cpm. In cases where this first algorithm faces
memory limitations, we propose another algorithm, cpmz, that provides
a solution close to the exact one, using more time but less memory.

Keywords: Graphs, Graph mining, Social networks, Community detec-
tion, k-clique percolation

1 Introduction

The problem of detecting communities in real networks has received a lot of
attention in recent years. Many definitions of communities have been proposed,
corresponding to different requirements on the type of communities that are to
be detected and/or on some properties of the studied graph: some definitions
depend on global or local properties of the graph, nodes can belong to several
communities or to a single one, links may have weights, communities may have
a hierarchical structure, etc. In practice, algorithms also have to be designed
to extract the communities from large graphs. Many definitions of communities
proposed with their corresponding algorithm already exist [5]. Most real networks
are characterized by communities that may overlap, i.e. a node may belong to
several communities. In the context of social networks for instance, each person
belongs to several communities such as colleagues, family, leisure activities, etc.
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One of the most popular methods designed to find overlapping communities is
the clique percolation method (cpm) which produces k-clique communities [14].

Definition 1 (k-clique). A k-clique ck is a fully connected set of k nodes, i.e.
every pair of its vertices is connected by a link in the graph.

For example, in Figure 2, the set {1, 3, 4, 6} is a 4-clique.

Definition 2 (k-cliques adjacency). Two k-cliques are said to be adjacent if
and only if they share k − 1 nodes.

For example, in Figure 2, the two 4-cliques {1, 3, 4, 6} and {1, 3, 6, 9} are
adjacent.

Definition 3 (cpm community). A k-clique community (or cpm community)
is the set of the vertices belonging to a maximal set of k-cliques that can be
reached from each other through a series of adjacent k-cliques.

Though the corresponance between the obtained communities and real-world
ones are hard to charactarize in a general manner, the advantages of this definition
are well known [8]: it is formally well defined, totally deterministic, does not
use any heuristics or function optimizations that are hard to interpret, allows
communities to overlap, and each community is defined locally3.

Despite much effort cpm has not been scalable to large graphs for medium
values of k, i.e, values between 5 and 10. We therefore seek in this work to
extend the computation of cpm to larger graphs. A bottleneck for most previous
contributions is the memory required. Indeed, exact methods need to store in
memory either all k-cliques, or all maximal cliques (cliques which are not included
in any other clique), which is prohibitive in many cases.

Our contribution is twofold:
1. we improve on the state of the art concerning the computation of cpm

communities, by leveraging an existing algorithm able to list k-cliques in a
very efficient manner;

2. in cases where this first algorithm faces memory limitations, we propose
another algorithm that provides a solution close to the exact one, using more
time but less memory.
We will show that these algorithms allow to compute exact solutions in cases

where this was not possible before, and to compute a close result of good quality
in cases where the graph is so large that our exact method does not work due to
memory limitations.

The rest of the paper is organized as follows. In Section 2, we present the
related work. In Section 3, we present our exact and relaxed algorithms. We
discuss time and memory requirements in Section 4. We then evaluate the
performance of our exact algorithm against the state of the art in Section 5, and
we compare the results and performances of our exact and relaxed algorithms.
We conclude in Section 6, and present some perspectives for future work.

3 Notice that if a node does not belong to at least one k-clique, it doesn’t belong to
any community.
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2 Related Work

There are many algorithms for computing overlapping communities as shown
in a dedicated survey [17]. The focus of our paper is on the computation of the
k-clique communities. Existing algorithms to compute k-clique communities in a
graph can be split in two categories:

(1) algorithms that compute all maximal cliques of size k or more and use
them to compute all k-clique communities. Indeed, two maximal cliques that
overlap on k− 1 nodes or more belong to the same k-clique community. Most
state-of-the-art approaches [8,14,15] belong to this category;

(2) Kumpula et al. [9] compute all k-cliques and then compute k-clique commu-
nities from them strictly following the definitions of a k-clique community,
i.e. detect which k-cliques are adjacent.

Algorithms of the first category differ in the method used to find which maximal
cliques are adjacent. However, the first step which consists in computing all
maximal cliques is always the same and is done sequentially. While this problem
is NP-hard, there exist algorithms scalable to relatively large sparse real-world
graphs, based on the Bron-Kerbosch algorithm [1,3,4].

Any large clique, with more than k vertices, will be included in a single
k-clique community, and there is no need to list all k-cliques of this large clique.
This is the main reason why there are more methods following the approach of
listing maximal cliques, category (1), rather than listing k-cliques, category (2).
However, it has been found that most real-world graphs actually do not contain
very large cliques and that listing k-cliques for small and medium values of k is a
scalable problem in practice [2,12], in many cases it is more tractable that listing
all maximal cliques. This makes algorithms in the category (2) more interesting
for practical scenarios.

The algorithm of [9] proposes a method to list all k-cliques then merges the
found k-cliques into k-clique communities using a Union-Find [7], a very efficient
data structure [6,16] which we describe briefly in Section 3.1. In the context of [9]
the Union-Find contains all (k − 1)-cliques (as elements) and each k-clique ck
triggers the union of the subsets that contain at least one (k − 1)-clique of ck.

Our first contribution builds on the same idea. We first propose to use an
efficient algorithm for listing k-cliques [2], which improves the overall performance.
Going further, in order to provide an approximation of the community structure
for graphs for which it is not possible to obtain the exact result due to memory
limits, we propose to perform union of sets of z-cliques, 2 ≤ z < k− 1, instead of
(k − 1)-cliques. This construction is discussed in details in the next section.

3 Algorithm

A graph G = (V,E) consists of its vertex set V and its edge set E. In the following
ck will always denote a k-clique, from the context it will be clear which one
exactly.
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3.1 Union-Find structure

The algorithms we will present rely on the Union-Find structure, also known in
the literature as a disjoint-set data structure. It stores a collection of disjoint sets,
allowing very efficient union operations between them. The structure is a forest,
whose trees correspond to disjoint subsets, and nodes correspond to the elements.
The operations on the nodes are the following:

– Find(p): returns the root of the tree containing a Union-Find node p.
– Union(r1, ..., rl): performs the union of trees represented by their roots ri by

making one root the parent of all others;
– MakeSet(): creates a new tree with one node p, corresponding to a new empty

set, and returns p.

3.2 Exact cpm algorithm

First we build on the idea introduced in [9]. A cpm community is represented as
the set of all the (k − 1)-cliques it contains. These communities are represented
by a Union-Find structure whose nodes are (k − 1)-cliques. The algorithm then
iterates over all k-cliques and tests if the current k-clique belongs to a community,
by testing whether it has a (k − 1)-clique in common with it.

Algorithm 1 Exact cpm algorithm

1: UF← Union-Find data structure
2: Dict← Empty Dictionary
3: for each k-clique ck ∈ G do
4: S ← ∅ . communities of ck to merge
5: for each (k − 1)-clique ck−1 ⊂ ck do
6: if ck−1 ∈ Dict.keys() then
7: p← UF.Find(Dict[ck−1])
8: else
9: p← UF.MakeSet()

10: Dict[ck−1]← p

11: S ← S ∪ {p}
12: UF.Union(S)

Algorithm 1 considers all k-cliques one by one. For every k-clique it iterates
over its (k − 1)-cliques c1k−1, c

2
k−1, . . . c

k
k−1. For every cik−1, i ∈ [1, k], it identifies

the set pi to which it belongs in the Union-Find. Then, it performs the union
of all sets pi. Several algorithms exist for efficiently listing k-cliques [12]. We
substitute one the best [2] to the one proposed by the authors of [9].

As the number of (k−1)-cliques can be very large, this approach is problematic
as in some cases it is not possible to store them all in memory. This leads us to a
new algorithm which requires less memory but in rare cases incorrectly merges
some cpm communities together.
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3.3 Memory efficient cpm approximation

For relatively small values of k, there are far fewer z-cliques than (k−1)-cliques in
real-world graphs. To get an intuition for this, consider the case of a large clique
of size c. It contains

(
c
z

)
z-cliques and this number increases with z for z < c/2.

Therefore storing all z-cliques is feasible in cases where it is not possible to store
all the (k − 1)-cliques. We use this idea to propose an algorithm computing
relaxed communities.

Definition 4 (cpmz community). An agglomerated k-clique community (or
cpmz community) is the union of one or more cpm communities.

Our memory efficient method, called cpmz algorithm, given a graph G, the
size of k-cliques and an integer z ∈ [2, k − 1), returns a set of agglomerated
k-clique communities, such that each cpm community is included in one and only
one cpmz community (see Theorem 1).

In the cpm algorithm, a community is represented as a set of (k − 1)-cliques,
and communities correspond to disjoint sets of (k − 1)-cliques. In the following,
a community is represented as a set of z-cliques, and cpmz communities are
represented as non-disjoint sets of z-cliques.

The main idea of our cpmz algorithm is to identify each (k − 1)-clique to the
set of its containing z-cliques. The algorithm is very similar to cpm. For each
k-clique, all (k− 1)-cliques are considered. Since we consider that a (k− 1)-clique
is represented by the set of its z-cliques, the community of a (k − 1)-clique is the
one that contains all its z-cliques.

The cpmz algorithm uses two principal data structures. UF is an Union-
Find data structure, whose nodes are identifiers of z-clique sets. We will call
these Union-Find nodes. The operations defined on this structure are presented
in Section 3.1. Each z-clique can belong to several Union-Find nodes. This is
recorded in the Setz dictionary, which associates to each z-clique the set of
Union-Find nodes to which it belongs. See Figure 1 for an example.

More formally, Setz is a dictionary with z-cliques as keys. For a z-clique cz:

– Setz[cz] is a set of Union-Find nodes;
– Setz[cz].add(q) adds the Union-Find node q to the set of Union-Find nodes

of cz. It can also be seen as the action of adding cz to the set identified by q.

At the end of the algorithm, every tree corresponds to a cpmz community
represented as a union of sets containing z-cliques.

Note that during the execution of the algorithm, the same z-clique cz can
belong to several Union-Find nodes of the same Union-Find set, which creates
redundancies in Setz [cz]. This is the case for instance in the example of Figure 1
in which Setz[(3,6)] contains both a and b which belong to the same Union-
Find set. This situation can occur if a z-clique belongs to two different Union-Find
sets which are merged later.

In our cpmz algorithm (presented below) we eliminate these redundancies
when we detect them (see Line 8).
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Setz[(1, 3)] = {a}, Setz[(3, 8)] = {b},
Setz[(1, 4)] = {a}, Setz[(3, 9)] = {a, b},
Setz[(1, 6)] = {a}, Setz[(6, 8)] = {b},
Setz[(3, 4)] = {a}, Setz[(6, 9)] = {a, b},
Setz[(3, 6)] = {a, b}, Setz[(8, 9)] = {b},
Setz[(4, 6)] = {a, c}, Setz[(1, 9)] = {a},
Setz[(4, 7)] = {c}, Setz[(6, 10)] = {c},
Setz[(4, 10)] = {c}, Setz[(7, 10)] = {c},
Setz[(6, 7)] = {c}.

Union-Find forest: a

b

c

Fig. 1. Example of a graph and the corresponding data structures of the cpmz algorithm.
In this example, we have k = 4, z = 2. There are 17 z-cliques belonging to 4 k-cliques,
namely {1,3,4,6}, {3,6,8,9}, {4,7,6,10} and {1,3,6,9}. The nodes of the Union-Find
structure are represented using letters a, b and c. Each z-clique is associated to one
or more Union-Find nodes, as shown in the Setz information on the top-right. The
Union-Find structure represents two sets because there are two different root nodes: a
and c. The first set contains all 2-cliques associated with a or b, the second contains
2-cliques associated with c.

Algorithm 2 cpmz pseudocode

1: UF← Empty Union-Find data structure
2: Setz← Empty Dictionary
3: for each k-clique ck ∈ G do
4: S ← ∅ . Sets of z-cliques to merge
5: for each (k − 1)-clique ck−1 ⊂ ck do
6: P ← ∅
7: for each z-clique cz ⊂ ck−1 do
8: Setz[cz]← {UF.Find(p) for p ∈ Setz[cz]}
9: if P == ∅ then

10: P ← Setz[cz]
11: else
12: P ← P ∩ Setz[cz]

13: S ← S ∪ P
14: q ← NULL . Identifier of the resulting set of z-cliques
15: if S == ∅ then
16: q ← UF.MakeSet()
17: else
18: q ← UF.Union(S)

19: for each z-clique cz ⊂ ck do
20: Setz[cz].add(q)
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Algorithm 2 is the pseudo-code of cpmz. The for loop on Line 3 iterates
over each k-clique ck of a graph G. As in the cpm algorithm, the idea is to
identify the communities of each (k− 1)-clique of ck and perform their union. As
explained above, the communities of a (k− 1)-clique are the ones that contain all
its z-cliques, which is why we compute their intersection in the set P in Line 12.
The set P is computed for all (k − 1)-cliques in Lines 4-13 and their union is
computed in set S. Then all the sets in S are merged in Line 18.

It may turn out that S is empty after the loop of Line 5. This corresponds
to the case where none of the (k − 1)-cliques of ck were observed before: if a
(k − 1)-clique ck−1 has not yet been seen in the algorithm, its z-cliques may not
belong to a common Union-Find set, and therefore P computed at Line 12 is
empty. If this happens for all (k − 1)-cliques of ck S is empty and a new set
(Union-Find node) is created on Line 16. The identifier of the resulting (new or
merged) set is added to the set of Union-Find nodes for every z-clique of the
current k-clique (Line 20).

In some rare cases, Line 12 will consider that a (k − 1)-clique belongs to a
Union-Find set while this is not true in the cpm exact case. Figure 2 gives an
example. In that case this causes an incorrect k-clique adjacency detection and
results in an incorrect merge of two or more k-clique communities.

1 2

3 4 5

6 7

89

10

Fig. 2. In this example k = 4 and z = 2. A k-clique percolation community is formed
by the nodes of the following k-cliques: {1, 3, 4, 6}, {1, 3, 6, 9}, {3, 6, 8, 9}, {6, 7, 8, 9},
{5, 7, 8, 9}, {2, 5, 7, 8}, {2, 4, 5, 7}. The middle (k − 1)-clique with nodes {4, 6, 7} is
formed by the z-cliques (edges) of other k-cliques, whereas it is not itself a part of any
k-clique given above. When a new k-clique {4, 6, 7, 10} is observed, the cpmz algorithm
will produce one community {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, but the exact cpm algorithm
gives two communities, namely {1, 2, 3, 4, 5, 6, 7, 8, 9} and {4, 6, 7, 10}.

Theorem 1 (cpmz validity). The cpmz algorithm returns a set of agglomer-
ated k-cliques communities, such that each cpm community is included in one
and only one agglomerated community.
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Proof. If two k-cliques c1k and c2k are adjacent, this means they share a (k − 1)-
clique ck−1. This will be correctly detected by Lines 5-12 of Algorithm 2: after
the iteration on c1k in the main loop, all z-cliques of ck−1 will belong to a
common Union-Find set. The root of this set will belong to S during the iteration
on c2k, ensuring that the Union-Find sets of both k-cliques will be merged. In
other words, cpm communities are never split by cpmz Algorithm and each
cpm community belongs to a single agglomerated community. Conversely, an
agglomerated community may contain more than one cpm community.

4 Analysis

We denote the number of k-cliques in graph G by nk. For each k-clique, the cpm
algorithm performs a Find and a Union operation for each of its (k − 1)-clique
(see Algorithm 1). It is well known (see for example [16]) that Union-Find data
structure performs operations in O(α(n)) amortized time, where α is the inverse
Ackermann function, and n is the number of elements. It grows extremely slowly.
Therefore, the number of operations is proportional in practice to k · nk. The
space complexity of this algorithm is dominated by the tree on the (k− 1)-cliques
and the corresponding cost is proportional to (k − 1) · nk−1.

cpmz is a tradeoff between memory and time. Indeed, we will see that the
cpmz has a higher running time than the exact cpm algorithm, but requires less
memory.

For the cpmz algorithm as well, the time required by the Union and Find

operations can still be considered as constant, as is the time required for the
MakeSet and Add operations. The total number of operations is then dominated
by the number of Find operations of Line 8. This line runs on each distinct
triplet (ck, ck−1, cz), where ck−1 ⊂ ck and cz ⊂ ck−1, and there are

(
k−1
z

)
·k · nk

such triplets. Each z-clique cz of Line 8 belongs to a number of Union-Find
nodes |Setz[cz]| that depends on the considered clique but also varies during the
execution of the algorithm: it can either increase as new Union-Find node are
added to Setz[cz] (on Line 20) or decrease (on Line 8) if some Union-Find trees
are merged (on Line 18). This number |Setz[cz]| is bounded by the number of
k-cliques each z-clique belongs to, which can theoretically be quite high. However,
we computed in practice the average number of Find operations performed for
each z-clique, and we will see in Section 5.3 that it is very often equal to 1 or 2
and never exceeds 6 in our experiments. The main difference in the running time
with respect to the exact cpm algorithm is, therefore, the extra

(
k−1
z

)
factor.

Concerning the space requirements, the cpmz algorithm needs to store all
z-cliques, which takes a space proportional to z ·nz. Each z-clique cz then belongs
to a number of Union-Find nodes |Setz[cz]| that varies during the algorithm
execution. Even if the average of this number is low, we are interested now in
the maximum space taken at any time of the execution. Finally, the number of
nodes in the Union-Find structure is equal to the number of MakeSet operations
that have been performed during the execution. In theory this number can also
be quite high. However, we will see in Section 5 that in practice the memory
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requirements of the cpmz algorithm are much lower than those of the cpm
algorithm.

Finally, notice that both our algorithms result in the Union-Find structure
whose nodes represent sets of cliques. This structure encodes the communities.
In order to obtain the actual node list of each community, post-processing is
needed. It consists in iterating over all cliques in the Union-Find structure. Then
for each clique one must find its root node in the Union-Find and add the clique
nodes to the corresponding set. We do not take into account this post-processing
in the reported running time and memory usage in the next section.

5 Experimental evaluation

Machine We carried out our experiments on a Linux machine DELL PowerEdge
R440, equipped with 2 processors Intel Xeon Silver 4216 with 32 cores each, and
with 384Gb of RAM.

Datasets We consider several real-world graphs that we obtained from [11]. Their
characteristics are presented in Table 1. We distinguish between three categories
of graphs according to their number of k-cliques. For graphs with small core
values all algorithms are able to run; for graphs with medium core values, the
state-of-the-art algorithms take too long to complete (with the exception of DBLP
discussed below) while our cpm algorithm obtains results for small values of k;
for graphs with large core values even our cpm algorithm runs out of memory
or time except for very small values of k, but we will show that we are able to
obtain relaxed results of high quality with our cpmz algorithm.

Table 1. Our dataset of real-world graphs, ordered by core value c. kmin and kmax

represent the minimum and maximum k on which we could run our cpm algorithm. nk

is the number of k-cliques of the graph.

network n m c kmin − kmax nkmin nkmax

soc-pokec
loc-gowalla
Youtube

zhishi-baidu

1,632,803
196,591

1,134,890
2,140,198

22,031,964
950,327

2,987,624
17,014,946

47
51
51
78

3 - 15
3 - 15
3 - 15
3 - 15

32,557,458
2,273,138
3,056,386
25,207,196

353,958,854
201,454,150

1,068
1,080,702,188

as-skitter
DBLP

WikiTalk

1,696,415
425,957

2,394,385

11,095,298
1,049,866
4,659,565

111
113
131

3 - 6
3 - 7
3 - 7

28,769,868
2,224,385
9,203,519

9,759,000,981
60,913,718,813
5,490,986,046

Orkut
Friendster

LiveJournal

3,072,627
124,836,180
4,036,538

117,185,083
1,806,067,135

34,681,189

253
304
360

3 - 5
3 - 4
3 - 4

627,584,181
4,173,724,124
177,820,130

15,766,607,860
8,963,503,236
5,216,918,441
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Implementation We implemented our cpm and cpmz algorithm in C. The
implementation is available on the following gitlab repository: https://gitlab.
lip6.fr/baudin/cpm-cpmz. For the competitors, we used the publicly available
implementations of their algorithms [8,9,14,15].

Computing domain For each graph and each algorithm, we performed the com-
putations of cpm for all values of k from 3 to 15, unless we were not able to
finish the computation for one of the following reasons:

– the memory exceeded 390 Gb of RAM,
– or the computation time exceeded 72 hours.

We ran the cpmz algorithm for z = 2 and z = 3. It could be computed on
all the cases for which cpm works, except for z = 3 in graphs zhishi-baidu with
k = 15 and DBLP with k = 7.

The interesting point is that we manage to have results with cpmz in cases
where the computation could not be carried out by the cpm algorithm: for
as-skitter k = 7, WikiTalk k = 8, 9, Orkut k = 6 and Friendster k = 5, 6.

The detail of all the calculated values, with which the following figures were
generated, is available on the following gitlab repository: https://gitlab.lip6.
fr/baudin/cpm-supplementary-material.

5.1 Comparison with the state of the art

The algorithm proposed by Palla et al. in the original paper introducing cpm [14]
is quadratic in the number of maximal cliques. Given that we are interested
in graphs with at least several million cliques, these graphs are too big to be
processed by this algorithm. We do not perform experiments with this algorithm.

In addition, our tests have shown that the algorithm by Reid et al. [15] has a
better performance than that of Gregori et al. [8] (sequential version) therefore
we do not present the results obtained with the version of Gregori et al.

We observed that there are indeed linearity factors:

– in time: for each k-clique, each of its (k − 1)-clique is processed in constant
time, hence the running time of cpm is indeed linear in k · nk

– in memory: the memory is used to store the Union-Find structure on the
(k − 1)-cliques: one node per (k − 1)-clique encoded on k − 1 integers, hence
the memory needed by cpm is linear in (k − 1) · nk−1.

Figure 3 compares the time and the memory necessary for the computation
of the cpm communities by our cpm algorithm and the remaining competitive
algorithms in the state of the art, proposed by Reid et al. [15] and Kumpula et
al. [9]. For each competitive algorithm, we plot its running time (resp. memory
usage) divided by the running time (resp. memory usage) of our cpm algorithm.
We display the results as a function of nk, where nk is the number of k-cliques of
the input graph. In some cases, our cpm algorithm obtains results whereas one
of the state-of-the-art doesn’t. This can happen because this algorithm exceeds

https://gitlab.lip6.fr/baudin/cpm-cpmz
https://gitlab.lip6.fr/baudin/cpm-cpmz
https://gitlab.lip6.fr/baudin/cpm-supplementary-material
https://gitlab.lip6.fr/baudin/cpm-supplementary-material
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Fig. 3. Comparison between time and memory consumption of the state-of-the-art cpm
methods and those from ours. For each competitive algorithm, we plot its running
time (resp. memory usage) divided by the running time (resp. memory usage) of our
cpm algorithm. We display the results as a function of nk, where nk is the number of
k-cliques of the input graph. The maximum time is limited to 72h and the maximum
memory to 390Gb. A marker placed at the corresponding line therefore indicates a
computation that did not finish, because of either time or memory limit.

either the time or memory limit. We display this by placing a symbol on the
corresponding horizontal line at the top of the figure.

First notice that the Reid et al. algorithm is better than ours for the four
smallest graphs in our dataset (soc-pokec, loc-gowalla, Youtube, zhishi-baidu).
Indeed, this algorithm begins by computing the maximum cliques, then processes
them to form communities. In the case of these small graphs, the maximum
cliques are easily computed. For such graphs, the memory used does not depend
on k because in all cases the maximal cliques are stored; interestingly, the time
computation time decreases with k as only the maximal cliques of size larger
than or equal to k have to be tested for adjacency.

This algorithm is also more efficient than ours in certain configurations, when
the graph is already well segmented into large cliques. This is the case with
our DBLP graph, for which the Reid et al. algorithm manages to compute the
communities in 10 seconds when we need several hours to process the large
number of k-cliques.

Notice however that their algorithm does not allow to process the largest
graphs of our dataset. The as-skitter intermediate graph contains too many
cliques and their algorithm does not provide a result in less than 72 hours. For
denser graphs (WikiTalk, Orkut, Friendster, LiveJournal), there are too many
maximum cliques for RAM, and the algorithm cannot run, while ours is able to
compute the result.

Finally, the algorithm of Kumpula et al. is systematically less efficient than
ours. Our algorithm is also able to obtain results in cases where no other algorithm
can provide any (see the points on the two horizontal lines on top of the figures).
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5.2 Memory gain of the cpmz algorithm

Figure 4 (right) compares the memory used by our algorithms cpm and cpmz
with z = 2, 3. We show the memory used by cpmz divided by the memory used
by cpm, as a function of nk. As for the previous figure, we represent cases where
cpmz exceeds the time limit on a horizontal line on top of the figure. In addition,
cases where we obtain results with cpmz and not cpm are represented by symbols
on a horizontal line at the bottom of the figure. For some small graphs, the
number of (k − 1)-cliques, which are stored by cpm, is smaller than the number
of z-cliques. For these graphs cpmz requires more memory than cpm. In most
cases however, we observe a huge memory gain, and in some cases it is even
possible to obtain results unachievable by our cpm algorithm.
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Fig. 4. Comparison between time and memory consumption of the cpmz algorithm and
our cpm. For cpmz with z = 2 and z = 3, we plot its running time (resp. memory usage)
divided by the running time (resp. memory usage) of our cpm algorithm. We display
the results as a function of nk, where nk is the number of k-cliques of the input graph.
The maximum time is limited to 72h, and the memory is not limiting in comparison
with cpm. A marker placed at the top line therefore indicates a computation that
did not finish, because of time limit. A marker placed at the bottom line indicates a
computation that finishes for cpmz but not for cpm.

In addition to this display and to the discussion about memory requirements
in Section 4, we performed experiments to evaluate the memory associated with
each z-clique in the algorithm. To do so, we computed the mean number of
Union-Find nodes to which each z-clique belongs. In Algorithm 2, we therefore
computed the sum the size of all Setz[cz] every time the algorithm reaches
Line 8 Then, we divided this sum by the number of times this line is browsed,
which is nk−1 · k ·

(
k−1
z

)
. We observed that this factor remains low; for all graphs

and all values of k and z it is between 1 and 2, except for the small graphs of
Youtube with a value around 4 for z = 2 and k ∈ [10, 15], z = 3 and k ∈ [11, 15],
and zhishi-baidu with a value around 5 for z = 2 and k = 5, 6, 7.

Concerning the running time, as discussed in Section 4, there are two factors
that cause cpmz to be slower than cpm. The first one is the fact that a z-clique
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can belong to several Union-Find nodes. As we just shown, this number is small
in practice and therefore it does not play a strong role in the running time. The
other factor is the extra

(
k−1
z

)
factor induced by the fact that we consider all

z-cliques included in a k-clique. This factor is high and therefore the computation
time remains the limiting factor. Figure 4 (left) compares it to the running time
of cpm.

5.3 cpmz communities are very close to cpm communities

To measure the precision of our algorithm, we compare the agglomerated com-
munities computed by the cpmz algorithm with those of the cpm algorithm. To
do so, we use an implementation of a Normalized Mutual Information measure
for sets of overlapping clusters, called onmi, provided by McAid et al. [13]. This
tool measures how similar two sets of overlapping communities are.

We carried out the similarity comparisons on all the graphs of our dataset,
with all the values of k for which we can compute the communities with the cpm
algorithm (see Table 1). We observe the following:
– for cpmz with z = 2, the average similarity is 98.6%, the median is 99.4%

and all values are larger than 93.8%;
– for cpmz with z = 3, the average similarity is 99.95%, the median is 100%

and all values are larger than 99.5%.
This confirms that the incorrect merges between communities performed by

the cpmz algorithm have little influence on the final result: the structure of
communities is barely impacted by the cpmz algorithm.

6 Conclusion and discussions

In this paper we addressed the problem of overlapping community detection
on graphs through the clique percolation method (cpm). Our contributions are
twofold: first we proposed an improvement in the computation of the exact result
by leveraging a state of the art k-clique listing method; then we proposed a
heuristic algorithm called cpmz that provides agglomerated communities, i.e.
communities that are supersets of the exact communities; this algorithm uses
much less memory than the exact algorithm, at the cost of a higher running time.

Through extensive experimentations on a large set of graphs coming from
different contexts, we show that:
– our exact cpm algorithm outperforms the state of the art algorithms in many

cases, and we are able to compute the cpm communities in cases where it
was not possible before;

– our relaxed cpmz algorithm uses significantly less memory than the exact
algorithm; even though its running time is higher, this allows us to obtain
agglomerated communities in cases where no other algorithm can run;

– finally the results provided by the cpmz algorithm have an excellent accuracy,
according to the onmi method and obtain a score very close to 1 in the vast
majority of cases.
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Notice however that for the DBLP graph, which is of medium size, the
approach proposed in [15] works better than ours. This can be explained because
this graph naturally has a strong clique structure. Indeed, a link exists in this
graph if two authors have written a paper together, and each paper therefore
induces a clique on the set of its authors. In this case computing the maximal
cliques and extracting the community out of them is more efficient than detecting
adjacent k-cliques. This raises the interesting question of whether it is possible to
predict which method will be more efficient on a graph by studying this graph’s
structure.

Several other interesting perspectives arise from our work. It should be noted
that the order in which k-cliques are processed plays an important role in the
incorrect community agglomerations performed by the cpmz algorithm, that
we do not yet fully understand. Our experiments show that in practice only a
few merges of k-clique communities happen. This gives rise to many interesting
graph theoretical questions about the characterisation of the sub-graphs that
can produce an incorrect k-clique adjacency detection: how many of them are
there in a typical real-world graph? We conjecture that it is possible to construct
examples in which no processing order of the k-cliques will lead to the exact
solution. However, in many cases including real-world graphs, it is possible that
a certain processing order of k-cliques yields results of a higher quality than
other orderings. This raises the question of how to design such an ordering.
Another interesting possibility would be to run the cpmz algorithm with two
or more different k-cliques ordering and compare their output: since the cpmz
communities are coarser than the exact cpm communities, it is possible to
compare the communities of both outputs to obtain a better result that any of
the individual runs.

Finally, the linkstream formalism [10] allows to represent interactions that
occur at different times, which is a natural framework to represent people meeting
at different time during the week or computers exchanging ip packets on the
internet. It would be interesting to investigate the community structure and its
temporal aspects in such data by extending the definition of k-clique communities
to linkstreams.
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