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Abstract: The harmonic closeness centrality measure associates, to each node of a graph, the average
of the inverse of its distances from all the other nodes (by assuming that unreachable nodes are at
infinite distance). This notion has been adapted to temporal graphs (that is, graphs in which edges
can appear and disappear during time) and in this paper we address the question of finding the top-k
nodes for this metric. Computing the temporal closeness for one node can be done in O(m) time,
where m is the number of temporal edges. Therefore computing exactly the closeness for all nodes, in
order to find the ones with top closeness, would require O(nm) time, where n is the number of nodes.
This time complexity is intractable for large temporal graphs. Instead, we show how this measure
can be efficiently approximated by using a “backward” temporal breadth-first search algorithm and a
classical sampling technique. Our experimental results show that the approximation is excellent for
nodes with high closeness, allowing us to detect them in practice in a fraction of the time needed
for computing the exact closeness of all nodes. We validate our approach with an extensive set
of experiments.
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1. Introduction

Determining indices capable of capturing the importance of a node in a complex network has
been an active research area since the end of the forties, especially in the field of social network analysis
where the ultimate goal has always been to develop theories “to explain the human behavior” [1].
After observing “that centrality is an important structural attribute of social networks”, and that there
“is certainly no unanimity on exactly what centrality is or on its conceptual foundations”, in [2] the
author proposed such a conceptual foundation of centrality by making use of graph theory concepts.
The node indices proposed in that paper (that is, the degree centrality, the betweenness centrality,
and the closeness centrality) have become quite standard notions in complex network analysis. For two
of them in particular, that is, closeness and betweenness, a quite large amount of literature has been
devoted to the design, analysis and experimental validation of efficient algorithms for computing
them, either exactly (e.g., the well-celebrated Brandes’ algorithm for computing the betweenness [3]) or
approximately (e.g., the sampling approximation algorithm for estimating the closeness [4]), especially
after that very large network data have become available, thus making the searching of very efficient
algorithms a necessity. Reporting all the results obtained in this direction is clearly out of the scope of
this paper: we refer the interested reader to one of the several surveys that appeared in the literature
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(such as [5]), to one of the several more conceptual works (such as [6]), or to the excellent periodic
table of network centrality shown in [7].

In this paper, we focus our attention to the closeness centrality measure, which associates to each
node of a graph its average distance from all the other nodes (since we will deal with unweighted
graphs only, the distance between two nodes u and v is simply the number of edges included in
the shortest path from u to v). In order to deal with the case of (weakly connected) directed graphs,
two main alternatives are available when formally defining this measure: one approach assumes that
the number of nodes reachable from a node u is known (see, for example, [8]), while the other, which is
also called harmonic centrality, uses the inverse of the distances in order to deal with disconnected
pairs of nodes (see, for example, [9]). Since in this paper we will use the temporal analogue of the
second alternative, we limit ourselves to give the following formal definition. Given a directed graph
G = (V, E), the (harmonic) closeness of a node u ∈ V is defined as C(u) = 1

n−1 ∑v∈V:v 6=u
1

d(u,v) ,
where d(u, v) denotes the number of edges included in the shortest path from u to v (by convention,
d(u, v) = ∞ if there is no path connecting u to v). The harmonic closeness of a node is a value between
0 and 1: the closer is C(u) to 1, the more important the node u is usually considered. For instance,
in a directed star with n nodes, there is one node whose closeness is equal to 1, while all other nodes
have closeness equal to 0. On the contrary, in a directed cycle with n nodes, all nodes have closeness
Hn−1, where Hk denotes the k-th harmonic number (that is, the sum of the reciprocals of the first k
natural numbers).

Computing the closeness of a node u in a directed (unweighted) graph is simple: we just have to
perform a breadth-first search starting from u and sum the inverse of the distances to all the nodes
reached by the search. This requires O(m) time and O(n) space, where n denotes the number of nodes
and m denotes the number of edges. However, we are usually interested in comparing the closeness
of all the nodes of the graph in order to rank them according to their centrality. This implies that
we have to perform a breadth-first search starting from each node of the graph, thus requiring time
O(nm). This computational time is unavoidable (as shown in [10]), unless the strong exponential time
hypothesis [11] fails. However, in the case of real-world complex networks, the number of nodes and of
edges is typically so large that this algorithm is practically useless. For this reason, several approaches
have been followed in order to deal with huge graphs, such as computing an approximation of the
closeness centrality (see, for example, [4,12]) or limiting ourselves to find the top-k nodes with respect
to the closeness centrality [10]. These algorithms turn out to be so effective and efficient that several of
them are already included in well-known and widespread used network analysis software libraries
(such as [13,14]).

So far, we have talked about static graphs, that is, graphs whose topology does not change
over time. In this paper, however, we will focus on (directed) relationships which have timestamps.
This led the research community to the definition of temporal graphs, that is, (unweighted) graphs in
which edges are active at specific time instants: for this reason, we call them temporal edges and we
denote them by triples (u, v, t), where t is the appearing time of the temporal edge connecting u and v.
Temporal graphs are ubiquitous in real life: phone call networks, physical proximity networks, protein
interaction networks, stock exchange networks, and public transportation networks are all examples of
temporal graphs, in which the nodes are related to each other at different time instants. Until recently,
the time dimension has been often neglected by aggregating the contacts between vertices to (possibly
weighted) edges, even in cases when detailed information on the temporal sequences of contacts or
interactions would have been easily available. For example, almost all collaboration networks (such
as the scientific or professional collaboration networks) have been almost always analyzed without
taking into account the time of the collaboration, even when this information was easily available
(such as in the case of the information given by the DBLP computer science bibliography web site).

However, if the temporal information is just ignored, we can lose important properties of the graph
and we can even deduce wrong consequences. For example, in the case of the temporal undirected
graph shown in the left part of Figure 1, if we ignore the temporal information associated with the
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edges, we can erroneously conclude that there exists a path starting from node a, arriving at node c,
and visiting the other node b. However, this path does not correspond to a temporally-feasible path,
since the edge connecting node a to node b appears after the edge connecting b to c: in other words,
when we arrive in b it is too late to take the edge towards c. It is then important to analyze temporal
graph properties by taking into account the temporal information concerning the time intervals in
which specific edges appear in the graph. For this reason, the community has rethought several
classical definitions of graph theory in terms of temporal graphs [15–17].

One of such definition is the one of closeness centrality, which has been repeatedly reconsidered
in the case of temporal graphs [18–27]. In several of these papers, the authors refer to the classical
definition of closeness centrality (that is, the one based on the average temporal distance), but in many
cases, they actually consider the temporal analogue of the harmonic closeness centrality. In both cases,
however, the first step to perform in order to rethink the definition of closeness in terms of temporal
graphs consists of defining the temporal distance between two nodes. Even if different notions of
distance have been introduced while working with temporal graphs (see, for example, [28]), in this
paper, we will focus only on one specific distance definition, which is, in our opinion, one of the most
natural ones: that is, the time duration of the earliest arrival path starting no earlier than a specific
time instant. This definition is motivated, for example, by the following typical query one could pose
to a public transport network: if I want to leave no earlier than time t, how long does it take to me to
go from a (bus/metro/train) station to another station?

More precisely, for any time instant t, a temporal t-path (also called t-journey) is a sequence of
edges such that the first edge appears no earlier than t and each edge appears later than the edges
preceding it. Its arrival time is the appearing time of its last edge and its duration is the difference
between its arrival time and t (plus one in order to include the traveling time along the last edge).
The t-distance dt(u, v) from a node u to a node v is then the minimum duration of any temporal
t-path connecting u to v and having the smallest arrival time (once again, if there is no t-path from
u to v, we will assume that dt(u, v) = ∞). For instance, in the case of the temporal triangle in the
left part of Figure 1, we have that d1(c, a) = 2− 1 + 1 = 2, while d2(c, a) = 4− 2 + 1 = 3: indeed,
if we insist in leaving after time 1, we cannot arrive at a before time 4. Note that, for any t ∈ (2, 4],
dt(b, a) = dt(b, c) = ∞, since there are no temporal edges incident to b with appearing time greater
than 2.

2

4

1

a

b

c

t = 1 1 < t ≤ 2 2 < t ≤ 4
a b c a b c a b c

a 2 4 3− t 5− t ∞ 5− t
b 2 1 3− t 5− t ∞ ∞
c 2 1 5− t ∞ 5− t ∞

Figure 1. An example of a temporal undirected graph with the three temporal edges (a, b, 2), (a, c, 4),
and (b, c, 1) (left) and of the corresponding t-distances (right).

Once we have a definition of distance from a node to another node, we can define the notion of
temporal closeness centrality of a node u at a given time instant t by simply applying the harmonic
definition of closeness in the case of a static graph (see, for example, [9]). Note that we refer to the
harmonic closeness centrality, since, as in the case of weakly connected directed graphs, this definition
allows us to deal with the fact that two nodes might not be connected by a temporal path. More precisely,
the t-closeness of a node u is defined as Ct(u) = 1

n−1 ∑v∈V:v 6=u
1

dt(u,v) . In [22], the evolution of Ct(u)
was analysed in the case of two social networks (an e-mail graph and a contact graph). To this aim,
the authors used an algorithm (inspired by [29]) for computing the t-closeness of a node of a temporal
graph, whose time complexity is linear in the number m of temporal edges and whose space complexity
is linear in the number n of nodes. For example, we can apply this algorithm to analyse and compare
the evolution of the t-closeness in the case of two actors, by referring to the IMDB collaboration graph,
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where the nodes are the actors and the temporal edges correspond to collaborations in the same (non
TV) movie (the appearing time of an edge is the year of the movie). In the left part of Figure 2, we show
the evolution of the t-closeness of Christopher Lee and Eleanor Parker (two actors who were alive
approximately in the same period) (Note that the t-closeness is greater than zero even when t is less than
the birth year of the corresponding actor. This is not a contradiction, since, in general, a temporal edge
may contribute to the t-closeness of a node for all t preceding the appearing time of the temporal edge
itself). As can be seen, the two plots are quite similar until the end of the sixties (even if the plot of Parker
has a smaller peak). Successively, Parker drastically reduced her activity (indeed, after The sound of music
in 1965, she participated to only six not very successful movies), while Lee had two other growing periods
(most likely, the second one is related to his participation to the Star Wars and the The Lord of the Rings
sagas). The figure thus suggests that Lee has been more “important” than Parker.
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Figure 2. The evolution of the t-closeness of Christopher Lee, in red, and Eleanor Parker, in black,
(left) and the top-20 nodes in Paris according to the temporal closeness (right).

In order to capture this idea formally, we introduce a global temporal closeness centrality of a
node u in a given time interval [t1, t2] which is based on computing the integral of Ct(u) over that
interval. That is, for any node u in the graph, we compute and analyse the temporal closeness C(u) of
u, which is defined as

C(u) =
1

t2 − t1

∫ t2

t1

Ct(u)dt

(intuitively, C(u) can be seen as the Area Under Curve (AUC) value of the function Ct(u)). This is
similar to what is done in [18] for the betweenness centrality (which is connected to the number of
shortest paths that pass through a node): since their betweenness definition depends on the time at
which a node is considered, they average it to obtain a global value. Here the integral is the natural
equivalent of the average, for a continuous function. For example, the closeness of Christopher Lee is
approximately equal to 0.005, while the closeness of Eleanor Parker is approximately equal to 0.003,
thus confirming the previous intuition that Lee is more central than Parker. The right part of Figure 2,
instead, shows the top 20 nodes in the public transport temporal graph of Paris with respect to the
temporal closeness centrality measure (the used graph is derived by the data set published in [30],
and successively adapted to the temporal graph framework in [31]).

1.1. Our Results

Our first contribution is the design and analysis of an algorithm for computing the temporal
closeness of a node of a temporal graph in a given time interval, whose time complexity is linear
in the number m of temporal edges and whose space complexity is linear in the number n of nodes.
This algorithm, which is an appropriate modification of the one used in [22] and adapted from [29],
can be seen as a temporal version of the classical breadth-first search algorithm. Computing the
temporal closeness of all nodes in order to compare them and find the nodes with highest temporal
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closeness can, hence, be done in time O(nm), by applying n times the algorithm for computing the
temporal closeness of a node. This time complexity, however, is much too high in the case of large
temporal graphs.

Our second and more important contribution is showing that the algorithm for computing the
temporal closeness of a node can be modified in order to obtain a backward version of the algorithm itself,
which allows us to compute the “contribution” C(u, d) of a specific node d to the temporal closeness of
any other node u. By using this algorithm (which is inspired by the earliest arrival profile algorithms
of [32]), we can then implement a temporal version of the sampling algorithm introduced in [4] in order
to approximate the closeness in static graphs. In particular, for a temporal graph with n nodes and m
temporal edges, we can compute an estimate of the temporal closeness of all its nodes whose absolute
error is bounded by ε in time O

(
log n

ε2 m
)

, which significantly improves over the time complexity of
applying n times the algorithm for computing the temporal closeness of a node, that is, O(nm).

There is a natural way of using this temporal closeness estimation to empirically find the exact
top-k nodes according to our temporal closeness metric. This approach simply consists in running
our estimate temporal closeness computation algorithm, in finding the top-K nodes for the estimated
temporal closeness, with K > k, and in computing the exact temporal closeness of these nodes.
Our third contribution is an extensive experimental validation of this approach with a dataset of
45 medium/large temporal graphs. Indeed, we show empirically that using this method we can
retrieve the actual top-100 nodes of all large graphs we have considered by choosing K = 1024, that is
(with a little abuse of notation), in time O(2048×m), which is between 10 and 100 times faster than
computing the temporal closeness of all nodes.

1.2. Other Related Work

Besides the references given above, our paper is related to all work on the definition and computation
of different temporal centrality measures, such as the temporal betweenness centrality defined in [33],
the f -PageRank centrality defined in [34], or the temporal reachability used in [35], just to mention some
recent ones. The authors of [36], instead, study the evolution of the closeness centrality for static graphs
and propose efficient algorithms for computing it. In the case of static graphs, an approach based on the
sampling approximation algorithm of [4], in order to select the candidates for which computing the exact
closeness, was proposed in [37]: its complexity is, however, still quite high, that is, Õ(n2/3m) (under the
rather strong assumption that closeness values are uniformly distributed between 0 and the diameter).
Still, in the case of static graphs, in [38] the authors identify the candidates by looking for central nodes
with respect to a “simpler” centrality measure (for instance, degree of nodes).

1.3. Structure of the Paper

In the rest of this section, we give all the necessary definitions concerning temporal paths, temporal
distances and temporal closeness (these definitions are mostly inspired by [16,28,39]). In Section 2 we
introduce and analyze our algorithm for computing the temporal closeness of a node of a temporal
graph in a given time interval, while in Section 3 we describe and analyze the backward version of this
algorithm and we show how this version can be used in order to obtain an error-guaranteed estimate
of the temporal closeness of all the nodes of a temporal graph. In these two sections, we assume that
the temporal edges have all distinct appearing times: in Section 4, we show how our algorithms can be
adapted (without worsening the time and space complexity) to the more general and more realistic
case in which multiple edges can appear at the same time. In Section 5 we experimentally validate
our approximation algorithm and we show how it can be applied to the problem of finding the top
nodes in real-world medium/large temporal graphs. Finally, in Section 6 we conclude by suggesting
some research directions and possibly other applications of our backward temporal breadth-first
search algorithm.
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1.4. Definitions and Notations

A temporal graph is a pair G = (V, E), where V is the set of nodes and E is the set of temporal
edges. A temporal edge e ∈ E is a triple (u, v, t), where u, v ∈ V are the source and destination
nodes of the edge, respectively, and t ∈ N is the appearing time of the edge. If the temporal edges
are bidirectional, then (u, v, t) can be also written as (v, u, t). Let tα (respectively, tω) denote the
minimum (respectively, maximum) appearing time of a temporal edge in E. The time horizon T (G) of
a temporal graph G is the interval [tα, tω ] of real numbers no smaller than tα and no greater than tω.
In this paper, we will assume that the temporal edges are given to the algorithms one after the other
(similarly, to the streaming model) either in non-decreasing or in non-increasing order with respect to
the appearing time.

A temporal path P (also called a temporal walk [17]) in a temporal graph
G = (V, E) from a node u ∈ V to a node v ∈ V is a sequence of temporal edges
e1 = (u1, v1, t1), e2 = (u2, v2, t2), . . . , ek = (uk, vk, tk) such that u = u1, v = vk, and, for each i with
1 < i ≤ k, ui = vi−1 and ti ≥ ti−1 + 1. The length of a temporal path is the number of temporal edges
included in it. The starting time (respectively, ending time) of a temporal path P, denoted by σ(P)
(respectively, η(P)), is equal to the appearing time of the first (respectively, last) temporal edge in the path.
Given a time t ∈ T (G) and two nodes u and v, we will denote by P≥(u, v, t) the set of all temporal paths
P from u to v such that σ(P) ≥ t. Among all these temporal paths, in this paper we will distinguish the
ones which allow us to arrive as early as possible.

Definition 1. Given a temporal graph G = (V, E), two nodes u and v in V, and a time t ∈ T (G), a path
P ∈ P≥(u, v, t) is said to be an earliest arrival t-path if η(P) = min{η(P′) : ∀P′ ∈ P≥(u, v, t)}.

Given a time t ∈ T (G) and two nodes u and v, the t-duration of a path P ∈ P≥(u, v, t) is defined
as δ(P) = η(P)− t + 1. Hence, an earliest arrival t-path is also a path in P≥(u, v, t) with minimum
t-duration. For this reason, we will also call these paths the shortest t-paths from u to v.

Definition 2. Given a temporal graph G = (V, E), two nodes u and v in V, and a time t ∈ T (G),
the t-distance dt(u, v) from u to v is equal to the t-duration of any shortest t-path from u to v (by convention,
if P≥(u, v, t) = ∅, then we set dt(u, v) = ∞).

Once we have introduced the notion of t-distance, we can also define the analog of the harmonic
closeness centrality in static graphs as follows.

Definition 3. Given a temporal graph G = (V, E), a node u, and a time t ∈ T (G), the t-closeness of u is
defined as

Ct(u) =
1

n− 1 ∑
v∈V:u 6=v

1
dt(u, v)

.

The (temporal) closeness of u in T (G) is then defined as

C(u) =
1

tω − tα

∫ tω

tα

Ct(u)dt.

An Example

Let us consider the temporal graph shown in the left part of Figure 1. In this case, tα = 1, tω = 4,
and T (G) = [1, 4]. As shown in the right part of the figure, for any t ∈ [1, 2], the duration of a
shortest t-path from node a to node b is equal to dt(a, b) = 2− t + 1 = 3− t, while, for any t ∈ (2, 4],
this duration is infinity since there is no t-path from node a to node b. On the other hand, for any
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t ∈ [1, 4], the duration of a shortest t-path from node a to node c is equal to dt(a, c) = 4− t + 1 = 5− t.
Hence, the closeness of node a is equal to

C(a) =
1
2

1
3

[∫ 2

1

(
1

3− t
+

1
5− t

)
dt +

∫ 4

2

1
5− t

dt
]
=

1
6

(
ln

2
1
+ ln

4
3
+ ln

3
1

)
≈ 0.35.

Analogously, we can verify that the closeness of node b is C(b) ≈ 0.16, and that the closeness of
node c is C(c) ≈ 0.23.

2. Computing the Closeness

In this section, we propose an algorithm for computing exactly the closeness of a node u of
a temporal graph G. This algorithm can be seen as a temporal version of the breadth-first search
algorithm starting from a source node s, in which the temporal edges are scanned in non-decreasing
order with respect to their appearing time. In the following, we assume that the appearing times of all
temporal edges are distinct: the algorithm can be adapted to the case in which this assumption is not
satisfied, as we will see below. Moreover, we assume that the temporal graph is directed: if this is not
the case, we simply have to examine each edge twice by inverting the source and the destination.

The algorithm maintains, for each node x of G, a triple τx = (lx, rx, ax), which indicates that,
for any time instant t in (lx, rx], any earliest arrival t-path P from s to x has ending time η(P) equal
to ax (see Algorithm 1). At the beginning, we do not know anything about the reachability of a
node x from s: hence, we set the arrival time of x equal to ∞ for an arbitrary time interval (for
example, (tα − 2, tα − 1]) preceding tα (line 1). When we read a new temporal edge (x, y, t), we first set
τs = {(t− 1, t, t− 1)}, since, clearly, the source node is always reachable even before the appearance
of the edge (line 2). Let τx = (lx, rx, tx) and τy = (ly, ry, ty) be the two triples associated with x and y,
respectively. If rx > ry, then we add to the closeness of s the contribution of node y corresponding to
the interval (ly, ry] (line 3) and we update the triple associated with y by setting τy = (ry, rx, t) (line 4).
This update is justified by Lemma 1. When all temporal edges have been read, we add to the closeness
of s the contribution of a node x corresponding to the interval (lx, rx] (line 5), which is the last interval
for which the earliest arrival time has been computed. The way of computing the contribution to the
closeness of s (lines 3 and 5) is justified by the proof of Theorem 1.

Lemma 1. Let G = (V, E) be a temporal graph and s ∈ V. For any u ∈ V with u 6= s, let
Ξu = 〈τu,0, τu,1, . . . , τu,hu〉 be the sequence of triples τu,i = (lu,i, ru,i, au,i) such that lu,0 = tα− 2, ru,0 = tα− 1,
au,0 = ∞, and, for 1 ≤ i ≤ hu, (lu,i, ru,i, au,i) is the triple assigned to τ[u] at the i-th execution of line 4 with
y = u during the running of Algorithm 1 with input G and s (note that hu = 0 if this line is never executed
with y = u). Then, for any u ∈ V with u 6= s, the intervals (lu,i, ru,i], for 0 ≤ i ≤ hu, form a partition of the
interval (tα − 2, ru,hu ], and, for any t ∈ T (G),

dt(s, u) =

{
au,i − t + 1 if t ∈ (lu,i, ru,i] with 1 ≤ i ≤ hu,
∞ otherwise.
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Algorithm 1: Algorithm for computing the closeness of a node
Data: Stream of temporal edges of a directed temporal graph G = (V, E) in non-decreasing

order with respect to their appearing time and source s
Result: Real number equal to the closeness of s
for x ← 1 to |V| do

1 τ[x] = (tα − 2, tα − 1, ∞);
end
C ← 0;
while there are other edges to be read do

let e← (x, y, t) be the next edge;
2 τ[s]← (t− 1, t, t− 1);

(lx, rx, ax)← τ[x];
(ly, ry, ay)← τ[y];
if rx > ry then

3 C ← C + ln ay−max(tα ,ly)+1
ay−max(tα ,ry)+1 ;

4 τ[y]← (ry, rx, t);
end

end
for x ← 1 to |V| do

(lx, rx, ax)← τ[x];

5 C ← C + ln ax−max(tα ,lx)+1
ax−max(tα ,rx)+1 ;

end
return C

(n−1)(tω−tα)

Proof. We prove the lemma by induction on the number k of temporal edges that have been read.
In particular, for any k with 0 ≤ k ≤ |E|, let A(k) be the following statement.

For any u ∈ V with u 6= s, let Ξk
u = 〈τu,0, τu,1, . . . , τu,hk

u
〉 be the prefix of Ξu containing the

triples assigned to τ[u] at line 4 with y = u after having read k edges. The intervals (lu,i, ru,i],
for 0 ≤ i ≤ hk

u, form a partition of the interval (tα − 2, ru,hk
u
], and, for any t ∈ [tα, ru,hk

u
],

if t ∈ (lu,i, ru,i] then dt(s, u) = au,i − t + 1.

We now prove by induction on k that A(k) is true for any k with 0 ≤ k ≤ |E|.
Base case. k = 0. In this case, no edge has been read yet and, hence, line 4 has never been

executed with y = u. We then have that, for any u ∈ V with u 6= s, h0
u = 0, Ξ0

u = 〈τu,0〉 with
τu,0 = (tα− 2, tα− 1, ∞), and, hence, (lu,0, ru,0] = (tα− 2, tα− 1] = (tα− 2, ru,h0

u
]. Moreover, the interval

[tα, ru,h0
u
] = [tα, tα − 1] is empty and the condition on the t-distances is “vacuosly” true. Hence, A(0)

is true.
Induction step. Given k with 1 ≤ k ≤ |E|, suppose that A(k− 1) is true. We now prove that A(k)

is also true. Let e = (x, y, t) be the k-th temporal edge read by the algorithm. Clearly, this edge has no
influence on any other node than y (since the graph is directed). Hence, we have just to prove that
the value of τ[y] is correctly updated. By the induction hypothesis, we know that the current value
of τ[y] = (ly, ry, ay) is such that, for any t′ ∈ [tα, ry], the ending time of any earliest arrival t′-path
from s to y is at most ay < t. Hence, the edge e cannot improve these ending times since its appearing
time is t. Analogously, we know that the current value of τ[x] = (lx, rx, ax) is such that ax < t is the
ending time of any earliest arrival t′-path from s to x with t′ ∈ (lx, rx]. If rx ≤ ry, the edge e does not
add any information for the node y, since we already know the ending time of any earliest arrival
t′-path from s to y, for any t′ ≤ ry. On the contrary (see the left part of Figure 3), if rx > ry, then,
for any time instant t′ ∈ (ry, rx] (for which we did not know yet the corresponding ending time of
any earliest arrival t′-path from s to y), we can now say that we can first reach x (at time ax with
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rx ≤ ax < t), and then wait until the temporal edge e appears to move to y at time t: hence, for all
these time instants, the earliest arrival time at y can now be set equal to t, that is, the value of τ[y]
becomes (ry, rx, t) (note that subsequent edges cannot improve this value since their appearing times
are greater than t). Hence, if Ξk−1

y = 〈τy,0, τy,1, . . . , τu,hk−1
y
〉, we have that Ξk

y = 〈τy,0, τy,1, . . . , τu,hk
y
〉 with

hk
y = hk−1

y + 1 and τu,hk
y
= (ry, rx, t). By induction hypothesis, the intervals (ly,i, ry,i], for 0 ≤ i ≤ hk−1

y ,

form a partition of the interval (tα − 2, ry,hk−1
y

]: by adding the triple (ry, rx, t), we obtain a partition of

the interval (tα − 2, ry,hk
y
] (since ry = ry,hk−1

y
and rx = ry,hk

y
). From the previous argument, it also follows

that, for any t′ ∈ [tα, ry,hk
y
], if t′ ∈ (ly,i, ry,i] then dt′(s, y) = ay,i − t′ + 1. We have thus proved that A(k)

is satisfied.
The lemma follows from the fact that its statement is exactly equivalent to A(|E|).

s

x

y

ry rx axt′ t

x

y

d

t sy lxt′ly

Figure 3. The update rule of the temporal breadth-first search algorithm for computing the closeness of
a node s (left) and of its “backward” version for computing the contribution of a node d to the closeness
of all the other nodes (right).

Theorem 1. Let G = (V, E) be a temporal graph and s ∈ V. Algorithm 1 with input G and s correctly
computes the closeness of s in G. If the temporal edges are already ordered in increasing order with respect to
their appearing time, then the complexity of the algorithm is O(|E|) time and O(|V|) space.

Proof. From Lemma 1, it follows that, with respect to the node u, the interval I = (tα − 2, ru,hu ] is
partitioned into hu + 1 intervals (lu,i, ru,i], such that, for any t ∈ [tα, tω ], if t ∈ (lu,i, ru,i], then dt(s, u) =
au,i − t + 1. That is, each time instant t ∈ (lu,i, ru,i] ∩ [tα, tω ] contributes to the closeness of s with the
value 1

au,i−t+1 . Hence, the closeness of s is equal to

C(s) =
1

(n− 1)(tω − tα)
∑

u∈V:u 6=s

hu

∑
i=0

∫ max(tα ,ru,i)

max(tα ,lu,i)

1
au,i − t + 1

dt

=
1

(n− 1)(tω − tα)
∑

u∈V:u 6=s

hu

∑
i=1

ln
au,i −max(tα, lu,i) + 1
au,i −max(tα, ru,i) + 1

.

Note that we used the maximum function in order to deal with the first interval whose left extreme
is smaller than tα and whose right extreme can also be smaller than tα (whenever u is not reachable
from s in the interval [tα, tω ]). Observe that the interval (ru,hu , tω ] might be non empty: however, if this
the case, then we can conclude that if we start from s at time t in this interval, then we cannot reach u.
That is, dt(s, u) = ∞ for any t ∈ (ru,hu , tω ] and, hence, this interval does not contribute to the closeness
of s. Hence, Algorithm 1 correctly computes the closeness of node s.

The time complexity of the algorithm is clearly O(|E|), since each temporal edge is analyzed
one time only, and the update operation requires constant time. The space complexity is linear in
the number of nodes, since (apart from the value C), for each node u, we have to maintain just three
numbers corresponding to the current value of τ[u].

From the previous theorem, it follows that if we want to compute the closeness of all nodes,
this would take time O(|V||E|), since we have to execute Algorithm 1 for each source node s. This time
complexity may turn out to be not acceptable in the case of real-world large size temporal graphs.
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That is why in the next section, we propose an analog of the sampling algorithm used for approximating
the closeness in the case of static graphs [4], based on an appropriate modification of Algorithm 1.

3. Approximating the Closeness

In order to approximate the closeness in temporal graphs, we first need to introduce the notion of
the latest starting path. To this aim, given a time t ∈ T (G) and two nodes u and v, we will denote by
P≤(u, v, t) the set of all temporal paths P from u to v such that η(P) ≤ t.

Definition 4. Given a temporal graph G = (V, E), two nodes u and v in V, and a time t ∈ T (G), a path
P ∈ P≤(u, v, t) is said to be the latest starting t-path if σ(P) = max{σ(P′) : ∀P′ ∈ P≤(u, v, t)}.

Moreover, we need to define the contribution of a destination node d to the closeness of another
node u.

Definition 5. Given a temporal graph G = (V, E) and two distinct nodes d and u, the contribution of d to the
closeness of u is defined as

C(u, d) =
1

tω − tα

∫ tω

tα

1
dt(u, d)

dt.

By convention, we also set C(u, u) = 0, for any node u ∈ V.

We now introduce a sort of backward version of Algorithm 1 (which can be seen as an adaptation
of the earliest arrival profile algorithms proposed in [32]), which has to be applied to a destination
node d, and that will allows us to compute, for any other node x, the contribution of d to the closeness
of x (that is, C(x, d)) and, hence, to adapt to temporal graphs the well-known sampling technique
already used in the case of classical graphs. Differently from the case of Algorithm 1, we assume
that the temporal edges are scanned in non-increasing order with respect to their appearing times.
Once again, we assume that the appearing times of all temporal edges are distinct (we will see in the
next section how the algorithm can be adapted to the case in which this assumption is not satisfied),
and that the temporal graph is directed (if this not the case, we simply have to examine each edge
twice by inverting the source and the destination). The algorithm maintains, for each node x of G,
a triple τx = (lx, rx, sx), which indicates that, for any time instant t in [lx, rx), any latest starting t-path
P from x to d has starting time σ(P) equal to sx (see Algorithm 2). At the beginning, we do not know
anything about the reachability of d from a node x: hence, we set the starting time of x equal to ∞
for an arbitrary time interval (for example, [tω + 1, tω + 2)) following tω (line 1). When we read a
new temporal edge (x, y, t), we first set τd = {(t, t + 1, t + 1)}, since, clearly, the destination node can
always reach itself even starting after the appearance of the edge (line 2). Let τx = (lx, rx, sx) and
τy = (ly, ry, sy) be the two triples associated with x and y, respectively. If lx > ly, then we add to C(x, d)
the contribution corresponding to the interval [lx, rx) (line 3) and we update the triple associated with
x by setting τx = (ly, lx, t) (line 4). This update is justified by Lemma 2. When all temporal edges have
been read, for each node x, we add to C(x, d) the contribution corresponding to the interval [lx, rx) and
to the interval [tα, lx) (line 5), which are the last intervals for which the latest starting time has been
computed. The way of computing the contribution to C(x, d) (lines 3 and 5) is justified by the proof of
Theorem 2.
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Algorithm 2: Algorithm for computing the closeness contribution of a node to all the others
Data: Stream of temporal edges of a directed temporal graph G = (V, E) in non-increasing

order with respect to their appearing time and destination d.
Result: Array of real number containing the “contribution” of d to the closeness of all other

nodes.
for x ← 1 to |V| do

C[x]← 0;
1 τ[x] = (tω + 1, tω + 2, ∞); S[x]← ∞;

end
while there are other edges to be read do

let e← (x, y, t) be the next edge;
2 τ[d]← (t, t + 1, t + 1); S[d]← t;

(lx, rx, sx)← τ[x];
(ly, ry, sy)← τ[y];
if ly < lx then

3 C[x]← C[x] + ln min(tω ,lx)−t+1
min(tω ,lx)−sx+1 ;

4 τ[x]← (ly, lx, t); S[x]← sx;
end

end
for x ← 1 to |V| do

(lx, rx, sx)← τ[x];

5 C[x]← C[x] + ln min(tω ,lx)−sx+1
min(tω ,lx)−S[x]+1 + ln lx−tα+1

lx−sx+1 ;

end
return C

tω−tα

Lemma 2. Let G = (V, E) be a temporal graph and d ∈ V. For any u ∈ V with u 6= d, let
Ξu = 〈τu,1, τu,2, . . . , τu,hu , τu,hu+1〉 be the sequence of triples τu,i = (lu,i, ru,i, su,i) such that lu,hu+1 = tω + 1,
ru,hu+1 = tω + 2, su,hu+1 = ∞, and, for 1 ≤ i ≤ hu, (lu,i, ru,i, su,i) is the triple assigned to τ[u] at the
(hu + 1− i)-th execution of line 4 with x = u during the running of Algorithm 2 with input G and d (note
that hu = 0 if this line is never executed with x = u). Then, for any u ∈ V with u 6= d, the intervals [lu,i, ru,i),
for i ≤ i ≤ hu + 1, form a partition of the interval [lu,1, tω + 2), and, for any t ∈ T (G),

dt(u, d) =

{
ru,i − t + 1 if su,i < t ≤ su,i+1 with 1 ≤ i ≤ hu,
∞ otherwise.

Proof. We prove the lemma by induction on the number k of temporal edges that have been read.
In particular, for any k with 0 ≤ k ≤ |E|, let S(k) be the following statement.

For any u ∈ V with u 6= s, let Ξk
u = 〈τu,hk

u
, . . . , τu,hu+1〉 be the suffix of Ξu containing the

triples assigned to τ[u] at line 4 with x = u after having read k edges. The intervals [lu,i, ru,i),
for hk

u ≤ i ≤ hu + 1, form a partition of the interval [lu,hk
u
, tω + 2), and, for any t ∈ [lu,hk

u
, tω ],

if su,i < t ≤ su,i+1 then dt(u, d) = ru,i − t + 1.

We now prove by induction on k that S(k) is true for any k with 0 ≤ k ≤ |E|.
Base case. k = 0. In this case, no edge has been read yet and, hence, line 4 has never been

executed with x = u. We then have that, for any u ∈ V with u 6= d, h0
u = hu + 1, Ξ0

u = 〈τu,hu+1〉 with
τu,hu+1 = (tω + 1, tω + 2, ∞), and, hence, [lu,hu+1, ru,hu+1) = [tω + 1, tω + 2) = [lu,h0

u
, tω + 2). Moreover,

the interval [lu,h0
u
, tω ] = [tω + 1, tω ] is empty and the condition on the t-distances is “vacuosly” true.

Hence, S(0) is true.
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Induction step. Given k with 1 ≤ k ≤ |E|, suppose that S(k− 1) is true. We now prove that S(k)
is also true. Let e = (x, y, t) be the k-th temporal edge read by the algorithm. Clearly, this edge has no
influence on any other node than x (since the graph is directed). Hence, we have just to prove that
the value of τ[x] is correctly updated. By the induction hypothesis, we know that the current value of
τ[x] = (lx, rx, sx) is such that, for any t′ ∈ [lx, tω ], the starting time of any latest starting t′-path from
x to d is at least sx > t. Hence, the edge e cannot improve these starting times since its appearing
time is t. Analogously, we know that the current value of τ[y] = (ly, ry, sy) is such that sy > t is the
starting time of any latest starting t′-path from y to d with t′ ∈ [ly, ry). If ly ≥ lx, the edge e does not
add any information for the node x, since we already know the starting time of any latest starting
t′-path from x to d, for any t′ ≥ lx. On the contrary (see the right part of Figure 3), if ly < lx, then,
for any time instant t′ ∈ [ly, lx) (for which we did not know yet the corresponding latest starting time
from x), we can now say that we can first reach y (at time t with t < sy ≤ ly by using the temporal
edge e), and then wait until starting the path from y to d at time sy: hence, for all these time instants,
the latest starting time at x can now be set equal to t, that is, the value of τ[x] becomes (ly, lx, t) (note
that subsequent edges cannot improve this value since their appearing times are smaller than t).
Hence, if Ξk−1

y = 〈τx,hk−1
x

, . . . , τu,hx+1〉, we have that Ξk
x = 〈τx,hk

x
, τx,hk−1

x
, . . . , τu,hx+1〉 with hk

x = hk−1
x − 1

and τu,hk
x
= (ly, lx, t). By the induction hypothesis, the intervals [lx,i, rx,i), for hk−1

x ≤ i ≤ hx, form
a partition of the interval [lx,hk−1

x
, tω + 2): by adding the triple (ly, lx, t), we obtain a partition of the

interval [lx,hk
x
, tω + 2) (since lx = lx,hk−1

x
and ly = rx,hk

x
). From the previous argument, it also follows

that, for any t′ ∈ [lx,hk
x
, tω ], if sx,i < t′ ≤ sx,i+1 then dt′(x, d) = rx,i − t′ + 1. We have thus proved that

S(k) is satisfied.
The lemma follows from the fact that its statement is exactly equivalent to S(|E|).

Theorem 2. Let G = (V, E) be a temporal graph and d ∈ V. Algorithm 2 with input G and d correctly
computes, for any u ∈ V with u 6= d, the value C(u, d). If the temporal edges are already ordered in decreasing
order with respect to their appearing time, then the complexity of the algorithm is O(|E|) time and O(|V|) space.

Proof. From Lemma 2, it follows that, with respect to the node u, the interval I = [lu,1, tω + 2]
is partitioned into hu + 1 intervals [lu,i, ru,i), such that, for any t ∈ [tα, tω ], if su,i < t ≤ su,i+1,
then dt(u, d) = ru,i − t + 1. That is, each time instant t ∈ (su,i, su,i+1] ∩ [tα, tω ] contributes to C(u, d)
with the value 1

ru,i−t+1 . Hence, we have that

C(u, d) =
1

tω − tα

[∫ min(su,1,tω)

tα

1
lu,1 − t + 1

dt +
hu

∑
i=1

∫ min(su,i+1,tω)

su,i

1
min(ru,i, tω)− t + 1

dt

]

=
1

tω − tα

[
ln

lu,1 − tα + 1
lu,1 −min(su,1, tω) + 1

+
hu

∑
i=1

ln
min(ru,i, tω)− su,i + 1

min(ru,i, tω)−min(su,i+1, tω) + 1

]
.

Note that we used the minimum function in order to deal with the last interval whose right
extreme is greater than tω and whose left extreme can also be greater than tω (whenever u cannot
reach d in the interval [tα, tω ]). Note also that the interval [tα, lu,1) might be non empty: if this the case,
then we can conclude that if we start from u at time t in this interval, then we cannot reach d before lu,1.
That is, dt(u, d) = lu,1 − t + 1 for any t ∈ [tα, lu,1) and, hence, this interval contributes to C(u, d) with
the first integral in the previous equation. Hence, Algorithm 2 correctly computes the contribution
C(u, d) of node d to the closeness of node u.

The time complexity of the algorithm is clearly O(|E|), since each temporal edge is analyzed once
only, and the update operation requires constant time. The space complexity is linear in the number
of nodes, since, for each node u, we have to maintain (apart from the value C) just four numbers
corresponding to the current value of τ[u] and to the starting value of the previous tuple.
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From the definition of closeness and of C(u, d), it follows that

C(u) =
1

n− 1 ∑
d∈V

C(u, d).

This formula immediately suggests the following definition of an estimator of the closeness of a node.

Definition 6. Given a temporal graph G = (V, E), a node u, and a (multi)set X = {x1, . . . , xh} of vertices in
V, we define the closeness X-estimator of u in T (G) as

CX(u) =
1

n− 1
n
h

h

∑
i=1

C(u, xi).

Theorem 3. Let G = (V, E) be a temporal graph and X ⊆ V be a randomly chosen (multi)set of h nodes in G.
If h = Θ(log n/ε2), then, for any node u ∈ V, |C(u)− CX(u)| ≤ ε with high probability.

The proof of the above theorem uses the same techniques of [4], and is very similar to the one
given in [40] to analyze the absolute error of a sampling-based algorithm for computing distance
distribution approximations in static graphs. For the sake of completeness, we give the complete proof.
As a first step, the following lemma shows that the closeness estimator is unbiased.

Lemma 3. Given a temporal graph G = (V, E) and a uniformly randomly chosen node x ∈ V, the expected
value of C{x}(u) is equal to C(u).

Proof. Since x has been randomly chosen in a uniform way, we have that

E[C{x}(u)] = 1
n ∑

d∈V
C{d}(u).

From the definition of the estimator and from the fact that h = 1, it follows that

E[C{x}(u)] = 1
n

1
n− 1

n ∑
d∈V

C(u, d) =
1

n− 1 ∑
d∈V

C(u, d) = C(u).

The lemma is thus proved.

In order to prove Theorem 3, we make use of the following application of the Hoeffding’s
inequality (see, for example, [41]).

Theorem 4. If A1, A2, . . . , Ah are independent random variables such that µ = E[∑h
i=1 Ai/h] and, for each i,

0 ≤ Ai ≤ 2, then, for any ε ≥ 0,

Pr

{∣∣∣∣∣∑h
i=1 Ai

h
− µ

∣∣∣∣∣ ≥ ε

}
≤ 2e−

hε2
2 .

Proof Theorem 3. Given a temporal graph G = (V, E), a node u, and a randomly chosen (multi)set X
of nodes in V with X = {x1, . . . , xh}, we apply the above theorem by setting Ai = C{xi}(u), for each i
with 1 ≤ i ≤ h. From Lemma 3, it follows that

µ = E
[

h

∑
i=1

Ai/h

]
= E

[
h

∑
i=1

C{xi}(u)/h

]
=

1
h

h

∑
i=1

E
[
C{xi}(u)

]
=

1
h

h

∑
i=1

C(u) = C(u).
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Moreover, from the definition of the estimator and from the fact that we can assume that the
number n of nodes is at least equal to 2, we have that, for each i with 1 ≤ i ≤ h,

0 ≤ Ai = C{xi}(u) ≤ 2.

Finally, we also have that

∑h
i=1 Ai

h
=

1
h

h

∑
i=1

C{xi}(u) =
1
h

n
n− 1

h

∑
i=1

C(u, xi) =
1

n− 1
n
h

h

∑
i=1

C(u, xi) = CX(u).

Hence, from Theorem 4, it follows that, for any ε ≥ 0,

Pr
{∣∣∣CX(u)− C(u)

∣∣∣ ≥ ε
}
≤ 2e−

hε2
2 .

By choosing h =
2 log n

ε2 , we then have that

Pr
{∣∣∣CX(u)− C(u)

∣∣∣ ≥ ε
}
≤ 2

n
,

and the theorem thus follows.

Finding Top-K Nodes

Theorem 3 states that we can approximate the closeness centrality of all nodes of a temporal graph
by using a sample of size h, which is logarithmic with respect to the number of nodes. In Section 5,
we will show how this approximation method works particularly well for nodes with a high closeness.
Based on this observation, a natural strategy for finding the top-k nodes consists of: (a) compute the
approximated temporal closeness for all nodes, using a sample size h; (b) rank the nodes according to
this estimation and select the top-K nodes, with K > k; and (c) compute the exact closeness of these K
nodes, then rank them and select the top-k nodes. As we will see in Section 5, in practice choosing
h = K = 1024 has worked in all cases we have investigated for finding the top-100 nodes. This leads to
a total cost proportional to 2048 ·m, which is a quite small (between 1/10 and 1/100) fraction of the
cost that would be needed to compute the exact closeness for all nodes.

4. How to Deal with Multiple Edges

In the previous sections, we have assumed that, for each time t ∈ T (G), there exists at most one
edge whose appearing time is equal to t. Clearly, this assumption is not realistic since, in the vast
majority of real-world temporal graphs, many edges can appear at the same time. In this section,
we show how we can modify Algorithm 2, in order to deal with this more general case (the modification
of Algorithm 1 is similar). For the sake of clarity of exposition, we will assume that, for each node u,
the algorithm maintains a list Iu of triples (instead of just one triple): it is not difficult to show that
only the last two triples are really necessary at each iteration of the algorithm, thus assuring that the
algorithm itself has linear space complexity.

Let us suppose that a new temporal edge e = (x, y, t) arrives, and that the last triple inserted in Ix

(respectively, Iy) is (lx, rx, sx) (respectively, (ly, ry, sy)). This implies that that if we want to arrive at the
destination d in the interval [lx, rx) (respectively, [ly, ry)), then we cannot start from x (respectively, y)
later than sx (respectively, sy). Remember that, in Algorithm 2, the temporal edges are scanned in
non-increasing order with respect to their appearing times: hence, we know that t ≤ sx ≤ lx < rx

(respectively, t ≤ sy ≤ ly < ry). We now distinguish the following cases.

1. t < sx ∧ t < sy. In this case, neither x nor y has yet used an edge at time t. Hence, we can update
the set of intervals as we did in the case of edges with distinct appearing times. That is, if ly < lx,
then add to Ix the triple (ly, lx, t).
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2. t < sx ∧ t = sy. In this case, y has already “encountered” an edge at time t. Let (l′y, r′y, s′y) be the
triple just before (ly, ry, sy) in Iy (note that l′y = ry and that t = sy < s′y). If l′y < lx, then we add to
Ix the triple (l′y, lx, t): indeed, since t < s′y, we now know that, to arrive at d in the interval [l′y, lx),
we can start from u at time t (by using the edge e), wait until time s′y, and then follow the journey
from y to d.

3. t = sx ∧ t < sy. In this case, x has already “encountered” an edge at time t. If ly < lx, then we
extend to the left the triple of x until ly: indeed, since sx < sy, we now know that, even to arrive
at d in the interval [ly, lx), we can start at time t (by using the edge e), wait until time sy, and then
follow the journey from y to d.

4. t = sx ∧ t = sy. In this case, both x and y have already “encountered” an edge at time t.
Let (l′y, r′y, s′y) be the triple just before (ly, ry, sy) in Iy (note that l′y = ry and t = sy < s′y). Similarly
to the previous case, if l′y < lx, then we extend to the left the triple of x until l′y.

Note that the modification of the contribution to C(x, d) has to be done only in the first two cases
(and at the end of the while loop, in order to deal with the leftmost intervals). Note also that the four
above cases require constant time, in order to be implemented: hence, the time complexity of the
modified algorithm is still linear in the number of temporal edges.

5. Experimental Results

In our experiments, we used 45 medium/large real-world temporal graphs taken from different
application domains, that is, collaboration, communication, and transportation domains. For sake of
brevity, we describe our results by referring to a sample of our dataset (see Table 1): the entire dataset
and the entire set of experimental results are shown in the Appendix A (Table A1). Here, we are going
to use the following temporal graphs.

Table 1. A sample of our dataset. For each graph we report the number of nodes, the number of
temporal edges, and the running times (in seconds) of EXACT (the cell marked with * is an estimation)
and APX-1024 (average among 50 experiments). The running times of APX-h, for any other value of h,
can be estimated as h · t/1024, where t is the running time of APX-1024.

Undirected Graphs Directed Graphs

Name Nodes Edges EXACT APX-1024 Name Nodes Edges EXACT APX-1024

FANT 34,464 87,331 1815 33 MELB 19,493 1,098,227 6258 380
TOPO 34,761 154,842 1649 47 FBWA 46,952 876,993 12,184 264
COME 162,303 666,568 29,601 203 LINU 63,400 1,096,400 19,313 317
ALL 527,535 3,152,994 484,906 941 TWIT 3,511,241 16,438,790 * 97,553,304 28,449

• TOPO. The nodes are autonomous systems and the temporal edges are connections between
autonomous systems. The appearing time of an edge is the time-point of the corresponding
connection [42–44].

• ALL, COME, FANT. Every node corresponds to an actor and two actors are connected by their
collaboration in a movie, where the appearing time of an edge is the year of the movie. We use
the whole temporal collaboration graph and the ones induced by the comedy and the fantasy
genres [45].

• MELB. Nodes are transport stops and temporal edges are connections traversed by a public vehicle:
the edge appearing time is the arrival time (see [30,31]).

• FBWA. The nodes of the graph are Facebook users, and each directed temporal edge links the user
writing a post to the user whose wall the post is written on [43,44,46].

• LINU. The communication graph of the Linux kernel mailing list. An edge (u, v, t) means that
user u sent an email to user v at time t [44].
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• TWIT. Tweets about the migrant crisis of 2015. A directed edge (u, v, t) means that user u retweeted
a tweet of user v at time t [47,48].

For all graphs (apart from TWIT), we have computed the exact values of the closeness centrality for
all nodes, in order to evaluate the quality of our approximation algorithm and of our ranking algorithm.
In the case of TWIT, we have executed only the approximation algorithm in order to deduce some
properties of the graph. Our computing platform is a machine with Intel(R) Xeon(R) CPU E5-2620 v3
at 2.40 GHz, 24 virtual cores, 128 Gb RAM, running Ubuntu Linux version 4.4.0-22-generic. The code
was written in Java, using Java 1.8, and it is available at https://github.com/piluc/TemporalCloseness.
Hereafter, we will refer to the exact algorithm as EXACT, and to our approximation algorithm as APX-h,
where h denotes the sample size in the definition of the closeness estimator. For each graph in our
dataset, we ran APX-h setting h equal to 32, 64, 128, 256, 512, 1024, and repeating each experiment
50 times.

5.1. Running Times

In Table 1 we also report, for each temporal graph, the running times in seconds of EXACT and
APX-1024. In the case of TWIT, the EXACT value is an estimation, since the (sequential) execution of the
algorithm would have taken approximately three years. In the case of APX-1024 we report the average
running time over 50 experiments. We remark that there is very little variability in the execution
time of Algorithm 2: hence, a quite precise estimation of the running times of APX-h, for any other
value of h, can be obtained by considering the running time t of APX-1024 reported in Table 1, and by
computing the value h · t/1024 (in particular, by taking h equal to the number of nodes, this is the
formula used to compute the estimate of the running time of EXACT with input TWIT). As can be seen,
the improvement of the running time of APX-1024 with respect to EXACT ranges from one to several
orders of magnitude. As expected, this improvement is particularly evident in the case of large graphs,
where we are able to compute an approximation of the closeness in less than 16 min instead of more
than 5 days for ALL and in less than 8 h, instead of 3 years for TWIT.

5.2. Accuracy

In this section, we analyze the accuracy of the estimation performed by APX-h for different h.
To this aim, we consider the following measures.

• Mean Absolute Error (MAE) in each experiment. Namely, for each experiment, we compute
∑v |CX(u) − C(u)|/n, where X is the sample of size h randomly chosen by APX-h. This is
guaranteed to be bounded with high probability (see Theorem 3).

• Relative Error (RE), which is defined, for a given node u and for a given sample X,
as |CX(u)− C(u)|/C(u). We show that, even though we do not have any theoretical guarantee
on this error, it is very low when considering nodes which are in the top of the ranking, while it
gets bigger for peripheral nodes.

MAE as a function of the sample size. Figure 4 shows the behaviour of MAE as a function of the
sample size, through box-and-whisker plots, where for each graph, and for each h (X-axis), the Y-axis
reports the median (and also minimum, maximum, first and third quartiles) among 50 experiments of
the MAEs obtained by running APX-h. For the sake of brevity, we show here just the plots for the graphs
COME, FBWA, and MELB (the behaviour is similar for the other graphs). Clearly, the scale is different
due to the different values of the closeness centrality of each graph. For the sake of completeness we
report the average closeness of COME, FBWA, and MELB, which is, respectively 6.1 · 10−4, 5.4 · 10−9,
and 2.5 · 10−5. As expected, when increasing the sample size h, the MAE gets consistently lower.
In particular, this applies to the median but also to the variability, as we see that the window between
the minimum and maximum and also the one between the quartiles reduces. In the case of h = 1024,
if we compare the median of the MAEs with the corresponding average values of closeness for the
three graphs we get an error of 8%, 4%, and 6%.

https://github.com/piluc/TemporalCloseness
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Figure 4. The mean absolute error of APX-h as a function of h, in the case of the temporal graphs COME,
FBWA, and MELB. For each graph and for each sample size h, the corresponding box-and-whisker plot
depicts the Mean Absolute Error (MAE) through its quartiles.

RE as a function of the ranking. We now show that the behaviour of the RE of APX-h for all the
nodes of each graph depends on their ranking. In particular, given a temporal graph with n nodes,
let r be the ranking computed by EXACT and let r(i), for any i with 1 ≤ i ≤ n, be the node v having
position i in the ranking r (smaller i means higher closeness). For each i, we compute the mean and
the maximum RE over 50 experiments of APX-h when estimating the closeness of the node v = r(i):
in the following, we denote by µRE(i) and mRE(i) these two values. Figure 5 reports, for each ranking
position i, the maximum µRE(i) and mRE(i) of APX-1024 among all the nodes with position up to i,
for the graphs COME, FBWA, and MELB (from top to bottom). More specifically, the black plots depict
the behavior of max1≤j≤i µRE(j), while the red dashed plots depict the behavior of max1≤j≤i mRE(j).
As can be seen, both the µRE(i) and mRE(i) are very small for nodes having high closeness value
(thus low ranks), while they are larger for nodes having a lower closeness value (thus high ranks).
This behavior is quite natural as nodes having lower closeness are less often “backward” reachable
from the sample and their closeness is often estimated as zero, or whenever they are “backward”
reached by the sample, their closeness is then overestimated. This induces a higher variability in
general for their estimation. On the other hand, nodes having higher values of closeness behave more
stably with respect to the chosen sample, leading to better estimation. The overall good results are
shown by this experiment suggest that APX-h is able to give a very good estimation for the top-k nodes,
i.e., the k nodes having higher closeness for a given constant k (see also Table A2 in the Appendix
A, which shows the difference between the average RE of the top-100 nodes and of the other nodes,
with respect to different sizes of the sample). However, it could happen that the closeness of nodes
with high rank, because of their possibly higher value of RE, could be overestimated by APX-1024:
thus, these nodes could overtake, in the ranking produced by APX-1024, nodes with higher closeness
(and, hence, lower rank). We will show in the next section that this is not the case in all the graphs we
have considered: intuitively, this phenomenon can be justified by the fact that the closeness of these
nodes with high rank and high RE is so small that even a significant overestimation of it does not allow
the nodes themselves to climb the top positions.
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Figure 5. Relative error of APX-1024 as a function of rank position for the graphs COME, FBWA,
and MELB. In particular, the horizontal axis corresponds to the position of a node in the exact ranking,
while the black (respectively, red dashed) plot indicates the maximum average (respectively, maximum)
RE (over 50 experiments) of all the nodes up to that position. The plot is in loglog-scale. Note that
there are groups of nodes with very similar relative error: as a result of a preliminary analysis of this
phenomenon, we noticed that this is due to the existence of several small cliques disconnected from the
rest of the graph.

5.3. Ranking and Finding Top-K Nodes

In the following, we analyze the performance of APX-h for different values of h, when retrieving
the ranking of the nodes according to their closeness. We first discuss the quality of the whole ranking
found by APX-h. Motivated by our experimental findings, we then focus on the problem of computing
the top-k central nodes for some fixed values of k.
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5.3.1. Ranking Convergence

Here, we analyze the convergence of the Kendall’s τ for the ranking retrieved by APX-h for
different values of h (intuitively, the Kendall’s τ measures the similarity between two rankings of the
same universe). Let r be a reference ranking and let q be the ranking found by APX-h. We compare
these whole rankings using the weighted variation of the Kendall’s τ proposed in [49], which gives
more weight (with hyperbolic decay) to inversions involving top nodes with respect to bottom ones.
For all graphs (apart from TWIT), we used the exact ranking computed by means of EXACT as reference
ranking r and we analysed τ for increasing values of h: we report in Figure 6 the average τ obtained
by 50 runs of APX-h. As can be seen, the τ values become close to 1 very quickly, being always higher
than 0.89 for h = 1024 (as shown in Table A3 in the Appendix A, in the entire dataset, the τ value
is always higher than 0.865 for h = 1024). In the case of TWIT, we used, as the reference ranking r,
a ranking obtained by running APX-1024 and we analyzed the τ values of APX-h up to h = 512. Once
again, the obtained τ is greater than 0.9 already for h = 128. This result, combined with the analysis
of the relative error depicted in Figure 5, strongly suggests that the strategy described at the end of
Section 3 to find the top-k nodes might turn out to be very efficient: the verification of this hypothesis
is the goal of the next section.
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Figure 6. Average Kendall’s τ values for undirected (left) and directed (right) graphs as a function of
the sample size h: the average Kendall’s τ of APX−h (over 50 experiments) is computed by referring
to the ranking computed by EXACT, except for the TWIT graph plot, where we refer to the ranking
computed by APX-1024 (for this reason, its plot stops at h = 512).

5.3.2. Computing Top-K

Given an integer k, we show how APX-h behaves when finding the top-k central nodes, observing
where the top-k nodes in the ranking induced by EXACT appear in the ranking induced by APX-h.
In particular, let r be the exact ranking, such that r(i) is the the vertex in the i-th position (smaller
i corresponds to higher centrality), and let q be the ranking obtained by APX-h, and q−1 its inverse.
Given k, we compute the maximum ranking q−1(v) for the first k nodes v in r, namely γ(k) =

max1≤i≤k q−1(r(i)). Hence, if k = 1, we are computing the position of the real top central node in the
approximated ranking, while, for larger values of k, we are considering the worst-case positioning
among the real top-k nodes. Figure 7 reports these values in the case k = 20 and for different values of
h, for the graphs COME, FBWA, and MELB. In particular, for each h, it reports the median of the γ(20)
values found among 50 experiments (together with the minimum, maximum, first, and third quartile).
As can be seen, despite the fact that the variability is relatively high for small sample sizes (namely,
for h = 32 and h = 64), already with h = 128 it significantly reduces. In particular, by setting h = 512,
we have that the top-20 nodes are always in the first 512 positions of the ranking found by APX-512.
This suggests that, in order to find the exact top-20, it is enough to run APX-512 and then compute
the exact closeness of the top-512 found (in O(m) time each). We have verified this hypothesis for all
the graphs in our dataset (apart from TWIT) and for different values of k (see Table 2 for the graphs
in our sample dataset and Table A4 in the Appendix A for the entire dataset). As a matter of fact,
in the case of large graphs (that is, with more than 20,000 nodes), we can compute the top-20 nodes
by executing APX-h with h = 1024 and then compute the exact closeness of the top-h found: the time
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complexity of this approach would then be O(2048×m) (which is between 10 and 100 times better
than the exact approach, when applied to the large graphs in our dataset). In the case of smaller graphs,
the experimental results, described in Table A4 of the Appendix A, show that a smaller value of h (that
is, h = 256) is almost always sufficient, thus giving a similar speed-up. Even more impressive is the
fact that, in the case of large graphs, the same value of h (that is, h = 1024) can be actually be used for
finding the top-100 nodes.
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Figure 7. Box-and-whisker plots of the maximum position of top 20 nodes in the approximate ranking
as a function of the sample size in the case of the temporal graphs COME, FBWA, and MELB.

Table 2. Maximum position of the top-k nodes (for the exact ranking) in the approximate ranking
computed by APX-h (over 50 experiments) in the case of the temporal graphs included in our sample
dataset (excluding TWIT for which the exact ranking could not be computed).

k = 1 k = 5 k = 10 k = 20 k = 100

Name h h h h h

256 512 1024 256 512 1024 256 512 1024 256 512 1024 256 512 1024

FANT 1072 382 47 2117 954 396 2859 1262 396 2957 1262 396 3409 1550 647
TOPO 15 4 5 65 22 11 65 33 19 110 74 36 281 167 137
COME 5 2 1 33 17 17 37 23 20 74 37 36 340 190 173
ALL 6 8 3 25 19 11 30 32 18 71 67 35 278 232 166

FBWA 56 42 30 95 93 51 95 93 51 163 104 94 544 504 474
LINU 5 4 3 79 53 19 143 78 37 175 103 49 279 198 192
MELB 124 58 15 256 116 51 256 116 66 306 185 125 1467 1157 706

6. Conclusions

We proposed a sampling-based approximation algorithm for the temporal closeness centrality
measure, and we experimentally showed that this algorithm can be extremely efficient in computing
the top-k nodes in real-world temporal graphs. An interesting open question is to understand why,
in the case of few graphs, our method is not as efficient as in the case of all the others: some preliminary
experimental results suggest that this might happen because all nodes have basically the same temporal
closeness which is very small. In order to attack this problem, we believe that it would be interesting
to study the performances of our algorithm on random temporal graphs. Notice, however, that there
is yet no consensus on how to generate random temporal graphs or which features to select to make
the random selection on, see for instance [50] and references within. Moreover, an interesting future
research line is to explore the extension and application of our approach (by still referring to [32]) to the
case in which temporal edges have a traveling time. Finally, it would be worth exploring the possibility
of applying to the temporal closeness the approach of [10,51] for static graphs, which basically consists
of executing breadth-first searches starting from all the nodes of the graph and in “cutting” this visits
as soon as it can be deduced (by using some appropriate bounds on the static closeness value) that the
source of the visit is not among the top-k.
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Appendix A. Further Experiments

In the following tables we will show our experimental test-bed and the results we obtained for
all the graphs. In Table A1, we report the full list of our graphs, with their number of nodes and
edges. Moreover, consistently with respect to Table 1, we also report the running time of EXACT and
the average running time of APX-1024 among 50 experiments. Recall that the running times of APX-h,
for any other value of h, can be obtained as h · t/1024, where t is the running time of APX-1024.

In Table A2, we report the average RE (together with the coefficient of variation) achieved
by APX-256, APX-512, APX-1024, for the top-100 nodes, according to the exact ranking, and for the
remaining nodes. The results largely confirm what we have shown in Figure 5, namely that the RE for
top-nodes is almost always very small if compared to the RE of all the other nodes. The graphs in the
upper part are undirected.

In Table A3, consistently with respect to Figure 6, we show the average Kendall’s τ for all the
graphs, comparing the ranking found by APX-h for h = 32, 64, 128, 256, 512, 1024 with the exact ranking
(except for the twitter graph, where we refer to the ranking computed by APX-1024).

Finally, in Table A4, similarly to Table 2, we report the maximum position of the top-k nodes (for
the exact ranking) in the approximate ranking computed by APX-h (over 50 experiments), with k =

1, 5, 10, 20, 100 and h = 256, 512, 1024. As we have estimated, obtaining the EXACT ranking and
closeness of twitter requires more than three years. For this reason, we were not able to provide these
results for this graph, so that it has been excluded from Tables A2 and A4.

Table A1. Our dataset. For each graph we report the number of nodes, the number of temporal edges,
and the running times (in seconds) of EXACT (the cell marked with * is an estimation) and APX-1024
(average among 50 experiments). The running times of APX-h, for any other value of h, can be estimated
as h · t/1024, where t is the running time of APX-1024.

Undirected Graphs

Name Nodes Edges EXACT APX-1024

topology 34,761 154,842 1649 47
adult 12,621 109,455 878 40
adventure 47,763 157,492 4668 50
all 527,535 3,152,994 484,906 941
animation 10,817 31,499 213 20
biography 18,215 37,257 473 24
comedy 162,303 666,568 29,601 203
family 34,464 87,331 1815 33
fantasy 30,801 75,492 1433 30
history 20,016 46,028 623 25
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Table A1. Cont.

Undirected Graphs

Name Nodes Edges EXACT APX-1024

music 16,417 36,217 346 21
musical 21,102 66,853 971 33
mystery 34,787 87,086 1863 33
scifi 24,551 54,578 916 30
war 19,690 51,980 617 27
western 11,344 58,230 382 29

Directed Graphs

Name Nodes Edges EXACT APX-1024

election 7119 103,675 201 34
facebook 46,952 876,993 12,184 264
twitter * 3,511,241 16,438,790 97,553,304 28,449
linux 6340 1,096,440 19,313 317
adelaide 7548 404,300 889 143
belfast 1917 122,693 62 33
berlin 4601 1,048,218 1358 352
bordeaux 3435 236,595 231 68
brisbane 9645 392,805 1051 110
canberra 2764 124,305 95 35
detroit 5683 214,863 350 63
dublin 4571 407,240 527 117
grenoble 1547 114,492 46 30
helsinki 6986 686,457 1342 196
kuopio 549 32,122 5 8
lisbon 7073 526,179 1019 167
luxembourg 1367 186,752 70 52
melbourne 19,493 1,098,227 6258 380
nantes 2353 196,421 126 55
palermo 2176 226,215 142 66
paris 11,950 1,823,872 6149 550
prague 5147 670,423 947 190
rennes 1407 109,075 42 30
rome 7869 1,051,211 2451 364
sydney 24,063 1,265,135 8635 411
toulouse 3329 224,516 204 63
turku 1850 133,512 69 38
venice 1874 118,519 59 32
winnipeg 5079 333,882 492 99
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Table A2. Average RE (and coefficient of variation) for the top-100 nodes (according to the exact
ranking) and for the remaining ones.

µRE of APX-256 µRE of APX-512 µRE of APX-1024

Name Top-100 Others Top-100 Others Top-100 Others

topology 0.145 (0.14) 0.351 (2.03) 0.099 (0.09) 0.323 (2.03) 0.061 (0.12) 0.287 (2.15)
adult 0.078 (0.11) 0.671 (1.18) 0.050 (0.09) 0.567 (1.23) 0.034 (0.06) 0.447 (1.28)
adventure 0.087 (0.07) 1.324 (0.83) 0.060 (0.06) 1.259 (0.76) 0.049 (0.06) 1.158 (0.75)
all 0.055 (0.05) 1.089 (2.12) 0.035 (0.04) 1.044 (1.69) 0.024 (0.07) 0.991 (1.41)
animation 0.140 (0.05) 1.429 (0.50) 0.091 (0.10) 1.250 (0.51) 0.057 (0.10) 1.012 (0.55)
biography 0.208 (0.18) 1.705 (0.42) 0.171 (0.16) 1.568 (0.38) 0.117 (0.15) 1.378 (0.39)
comedy 0.063 (0.05) 1.237 (1.21) 0.038 (0.08) 1.172 (1.03) 0.038 (0.10) 1.111 (0.95)
family 0.169 (0.06) 1.723 (0.50) 0.156 (0.05) 1.612 (0.43) 0.100 (0.11) 1.468 (0.42)
fantasy 0.274 (0.09) 1.701 (0.48) 0.207 (0.16) 1.588 (0.43) 0.129 (0.11) 1.433 (0.42)
history 0.207 (0.11) 1.644 (0.45) 0.142 (0.12) 1.504 (0.42) 0.103 (0.09) 1.316 (0.43)
music 0.189 (0.09) 1.714 (0.39) 0.159 (0.07) 1.577 (0.35) 0.104 (0.10) 1.378 (0.36)
musical 0.158 (0.20) 1.383 (0.61) 0.100 (0.28) 1.246 (0.61) 0.069 (0.25) 1.082 (0.64)
mystery 0.134 (0.11) 1.582 (0.60) 0.090 (0.09) 1.485 (0.54) 0.066 (0.11) 1.355 (0.52)
scifi 0.204 (0.11) 1.754 (0.41) 0.139 (0.11) 1.639 (0.36) 0.100 (0.11) 1.464 (0.35)
war 0.150 (0.10) 1.446 (0.55) 0.112 (0.09) 1.300 (0.55) 0.064 (0.12) 1.118 (0.58)
western 0.070 (0.17) 0.836 (1.01) 0.050 (0.14) 0.730 (1.04) 0.034 (0.19) 0.593 (1.08)

election 0.124 (0.16) 0.581 (1.41) 0.086 (0.17) 0.503 (1.46) 0.061 (0.16) 0.438 (1.53)
facebook 0.075 (0.38) 0.614 (1.81) 0.060 (0.25) 0.557 (1.64) 0.049 (0.39) 0.506 (1.61)
linux 0.352 (0.17) 0.445 (1.95) 0.208 (0.19) 0.387 (1.96) 0.151 (0.23) 0.344 (2.04)
adelaide 0.055 (0.33) 0.094 (2.88) 0.042 (0.27) 0.073 (3.03) 0.033 (0.28) 0.057 (3.19)
belfast 0.146 (0.34) 0.186 (1.02) 0.112 (0.34) 0.148 (0.98) 0.084 (0.31) 0.108 (1.02)
berlin 0.069 (0.23) 0.041 (1.91) 0.050 (0.19) 0.030 (2.13) 0.036 (0.20) 0.023 (2.57)
bordeaux 0.059 (0.25) 0.112 (2.29) 0.048 (0.20) 0.090 (2.34) 0.035 (0.20) 0.068 (2.42)
brisbane 0.092 (0.33) 0.176 (2.02) 0.078 (0.30) 0.146 (2.07) 0.059 (0.34) 0.118 (2.19)
canberra 0.118 (0.30) 0.148 (1.14) 0.095 (0.32) 0.121 (1.18) 0.074 (0.31) 0.093 (1.20)
detroit 0.051 (0.19) 0.074 (2.30) 0.037 (0.16) 0.059 (2.62) 0.028 (0.20) 0.041 (2.69)
dublin 0.066 (0.27) 0.186 (2.23) 0.053 (0.27) 0.152 (2.30) 0.041 (0.27) 0.118 (2.37)
grenoble 0.144 (0.21) 0.340 (1.19) 0.106 (0.22) 0.261 (1.23) 0.076 (0.24) 0.182 (1.24)
helsinki 0.082 (0.25) 0.122 (2.65) 0.069 (0.24) 0.102 (2.76) 0.051 (0.23) 0.081 (2.93)
kuopio 0.117 (0.32) 0.205 (1.18) 0.085 (0.31) 0.140 (1.15) 0.058 (0.31) 0.100 (1.16)
lisbon 0.124 (0.20) 0.198 (1.65) 0.098 (0.18) 0.156 (1.85) 0.071 (0.15) 0.113 (2.04)
luxembourg 0.073 (0.36) 0.050 (1.53) 0.055 (0.34) 0.037 (1.94) 0.039 (0.30) 0.026 (1.88)
melbourne 0.062 (0.24) 0.142 (2.26) 0.051 (0.22) 0.117 (2.40) 0.035 (0.25) 0.095 (2.46)
nantes 0.117 (0.25) 0.188 (1.57) 0.094 (0.24) 0.150 (1.68) 0.067 (0.25) 0.110 (1.70)
palermo 0.066 (0.26) 0.041 (0.35) 0.051 (0.27) 0.030 (0.36) 0.036 (0.28) 0.021 (0.36)
paris 0.074 (0.25) 0.290 (1.97) 0.055 (0.24) 0.249 (1.99) 0.043 (0.21) 0.209 (2.01)
prague 0.097 (0.20) 0.242 (2.03) 0.081 (0.17) 0.210 (2.09) 0.056 (0.19) 0.164 (2.20)
rennes 0.094 (0.19) 0.130 (1.76) 0.068 (0.23) 0.095 (1.84) 0.048 (0.23) 0.066 (1.87)
rome 0.053 (0.24) 0.098 (3.07) 0.040 (0.20) 0.079 (3.21) 0.032 (0.21) 0.062 (3.37)
sydney 0.122 (0.28) 0.276 (1.85) 0.105 (0.25) 0.238 (1.94) 0.081 (0.23) 0.204 (1.99)
toulouse 0.105 (0.28) 0.157 (1.41) 0.081 (0.30) 0.124 (1.47) 0.064 (0.26) 0.096 (1.51)
turku 0.067 (0.31) 0.113 (2.45) 0.046 (0.33) 0.085 (2.66) 0.035 (0.36) 0.062 (2.67)
venice 0.131 (0.27) 0.203 (1.53) 0.098 (0.30) 0.156 (1.54) 0.072 (0.30) 0.114 (1.62)
winnipeg 0.054 (0.36) 0.039 (2.42) 0.040 (0.31) 0.030 (3.29) 0.032 (0.32) 0.022 (2.98)
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Table A3. Average Kendall’s τ values for the graphs in our dataset: the Kendall’s τ is computed by
referring to the ranking computed by EXACT, (the cell marked with * is an estimation) apart from the
twitter graph, where we refer to the ranking computed by APX-1024.

Name APX-32 APX-64 APX-128 APX-256 APX-512 APX-1024

topology 0.976 0.982 0.986 0.989 0.991 0.992
adult 0.920 0.936 0.958 0.968 0.974 0.979
adventure 0.920 0.938 0.948 0.955 0.960 0.963
all 0.954 0.964 0.972 0.977 0.981 0.983
animation 0.854 0.890 0.906 0.914 0.920 0.925
biography 0.624 0.747 0.829 0.858 0.869 0.876
comedy 0.941 0.954 0.961 0.968 0.973 0.975
family 0.717 0.811 0.864 0.879 0.890 0.898
fantasy 0.631 0.757 0.820 0.864 0.883 0.894
history 0.646 0.761 0.823 0.867 0.880 0.891
music 0.613 0.760 0.829 0.851 0.861 0.866
musical 0.813 0.884 0.915 0.926 0.938 0.944
mystery 0.808 0.860 0.901 0.917 0.925 0.929
scifi 0.628 0.721 0.803 0.842 0.855 0.865
war 0.782 0.855 0.894 0.913 0.925 0.933
western 0.927 0.947 0.957 0.965 0.972 0.976

election 0.903 0.930 0.949 0.962 0.971 0.978
facebook 0.942 0.957 0.967 0.973 0.981 0.984
linux 0.959 0.970 0.978 0.982 0.985 0.988
adelaide 0.847 0.894 0.932 0.957 0.970 0.979
belfast 0.721 0.768 0.795 0.863 0.906 0.935
berlin 0.869 0.904 0.940 0.958 0.970 0.979
bordeaux 0.725 0.797 0.874 0.918 0.944 0.962
brisbane 0.872 0.908 0.952 0.971 0.980 0.985
canberra 0.811 0.860 0.911 0.935 0.951 0.966
detroit 0.804 0.860 0.905 0.941 0.962 0.973
dublin 0.805 0.865 0.902 0.935 0.957 0.970
grenoble 0.698 0.731 0.778 0.845 0.907 0.941
helsinki 0.843 0.873 0.901 0.926 0.951 0.967
kuopio 0.759 0.806 0.859 0.898 0.927 0.949
lisbon 0.845 0.872 0.909 0.938 0.954 0.968
luxembourg 0.885 0.915 0.939 0.955 0.969 0.978
melbourne 0.696 0.711 0.773 0.841 0.894 0.960
nantes 0.710 0.751 0.813 0.880 0.927 0.949
palermo 0.791 0.850 0.898 0.928 0.950 0.964
paris 0.696 0.736 0.794 0.891 0.944 0.966
prague 0.833 0.852 0.900 0.926 0.947 0.962
rennes 0.754 0.759 0.842 0.899 0.934 0.955
rome 0.825 0.862 0.917 0.949 0.966 0.976
sydney 0.831 0.870 0.898 0.941 0.965 0.977
toulouse 0.758 0.770 0.825 0.890 0.943 0.959
turku 0.842 0.881 0.923 0.946 0.961 0.973
venice 0.812 0.868 0.897 0.934 0.951 0.965
winnipeg 0.867 0.915 0.947 0.963 0.973 0.981

twitter * 0.637 0.857 0.922 0.959 0.973
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Table A4. Maximum position of the top-k nodes (for the exact ranking) in the approximate ranking
computed by APX-h (over 50 experiments) in the case of the temporal graphs included in our dataset
(excluding TWIT for which the exact ranking could not be computed).

k = 1 k = 5 k = 10 k = 20 k = 100

Name h h h h h

APX APX APX APX APX APX APX APX APX APX APX APX APX APX APX
256 512 1024 256 512 1024 256 512 1024 256 512 1024 256 512 1024

topology 15 4 5 65 22 11 65 33 19 110 74 36 281 167 137
adult 2 1 1 9 7 5 17 14 12 47 28 28 219 182 138
adventure 1 0 0 44 29 12 63 42 22 156 94 40 506 500 289
all 6 8 3 25 19 11 30 32 18 71 67 35 278 232 166
animation 7 3 3 33 22 14 38 26 17 66 43 39 273 169 138
biography 196 15 14 327 115 48 327 204 51 496 411 310 1854 831 548
comedy 5 2 1 33 17 17 37 23 20 74 37 36 340 190 173
family 57 15 7 57 37 14 107 37 20 283 136 71 582 365 270
fantasy 1072 382 47 2117 954 396 2859 1262 396 2957 1262 396 3409 1550 647
history 31 14 7 67 35 31 123 62 42 237 141 66 942 517 307
music 59 28 7 59 28 10 69 70 33 190 127 58 986 337 271
musical 419 35 7 606 109 34 1031 179 57 1630 469 237 1978 1293 785
mystery 4 2 2 130 24 18 179 87 50 219 108 77 879 466 515
scifi 48 3 2 96 87 57 582 179 119 582 179 119 2104 760 305
war 47 5 3 69 33 12 101 51 28 253 240 84 713 356 219
western 3 2 1 13 9 6 44 32 21 44 33 25 280 265 172

election 4 3 3 11 8 7 32 21 17 67 55 40 790 414 243
facebook 56 42 30 95 93 51 95 93 51 163 104 94 544 504 474
linux 5 4 3 79 53 19 143 78 37 175 103 49 279 198 192
adelaide 14 8 4 32 18 12 49 28 22 184 132 84 389 310 222
belfast 65 50 11 107 80 42 149 102 76 189 148 126 405 372 381
berlin 58 44 12 79 52 36 120 89 61 152 118 108 312 226 198
bordeaux 30 13 8 46 32 18 111 88 57 280 227 109 671 462 338
brisbane 48 44 15 129 78 62 129 78 62 162 112 85 411 257 224
canberra 44 28 22 49 33 29 110 87 72 110 108 93 496 464 360
detroit 8 2 3 31 11 8 40 21 19 78 47 39 284 202 173
dublin 42 19 7 71 44 35 71 60 42 121 76 61 301 261 231
grenoble 89 71 29 130 71 53 169 105 87 192 157 110 421 383 322
helsinki 78 59 42 163 113 80 449 264 235 449 264 235 583 475 387
kuopio 26 13 14 71 44 21 71 48 32 82 70 61 197 181 144
lisbon 106 73 48 219 113 72 228 173 105 313 232 141 682 491 426
luxembourg 11 10 6 16 10 10 27 20 17 69 60 50 202 167 143
melbourne 124 58 15 256 116 51 256 116 66 306 185 125 1467 1157 706
nantes 43 16 8 94 48 49 117 60 49 162 111 73 415 364 339
palermo 29 21 20 67 31 24 67 49 38 122 84 69 316 341 218
paris 116 65 50 190 91 72 208 114 72 298 226 148 530 417 380
prague 190 147 75 190 147 83 190 147 120 326 230 173 450 439 368
rennes 31 20 6 62 33 20 152 92 78 152 101 80 352 302 284
rome 28 15 13 36 30 25 48 44 32 84 76 49 359 244 180
sydney 96 55 27 128 81 62 128 112 73 191 140 102 1028 645 513
toulouse 57 28 18 77 41 40 88 57 47 131 89 79 309 264 250
turku 9 6 4 22 17 13 63 41 33 63 45 33 366 233 226
venice 28 25 10 58 43 29 70 60 42 133 126 97 268 227 207
winnipeg 10 7 5 20 15 15 26 24 22 45 39 34 321 241 208
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