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Abstract

Many real-world complex networks, like actor-movie or file-provider relations, have a bi-
partite nature and evolve over time. Predicting links that will appear in them is one of the
main approach to understand their dynamics. Only few works address the bipartite case,
though, despite its high practical interest and the specific challenges it raises. We define
in this paper the notion of internal links in bipartite graphs and propose a link prediction
method based on them. We thoroughly describe the method and its variations, and experi-
mentally compare it to a basic collaborative filtering approach. We present results obtained
for a typical practical case. We reach the conclusion that our method performs very well,
and we study in details how its parameters may influence obtained results.

1 Introduction

Many real-world complex networks have a natural bipartite structure and may therefore be
modeled as bipartite graphs, i.e. two sets of nodes with links only between nodes in different
sets. Typical examples include actor-movie networks [40] where actors are linked to the movies
they played in; authoring networks [30] where authors are linked to the papers they co-signed;
peer-to-peer exchange graphs [17] where peers are linked to the files they provided/searched;
and on-line shopping networks where clients are linked to the products they bought [28].

Studying such networks has received recently much attention, see [25] for a survey. The main
approach consists in transforming bipartite graphs into classical (non-bipartite) graphs through
a process called projection 1, but this induces an important loss of information. Studying them
directly as bipartite graphs therefore is very appealing, but there is a lack of established methods
for doing so.

In addition most of these networks are dynamic: they evolve over time, with node and link
additions and removals. Studying such dynamics is extremely important for our understanding
of these objects, but here again very limited knowledge and basic methods is available, even for
classical (non-bipartite) dynamic graphs.

One of the main approaches developed for studying graph dynamics is link prediction [27,
18, 6], which consists in predicting the links that will probably appear in the future, given a
snapshot of the considered graph at a given time.

1One studies for instance co-starring networks, where two actors are linked if they played together in a movie,

or co-authoring networks where two authors are linked if they signed a paper together.
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We address here the problem of link prediction in dynamic bipartite graphs. To do so, we
introduce a special kind of links in bipartite graphs, which we call internal links. We then
propose an approach based on these links and compare it to a basic classical approach. We
study the performance of our method on real-world datasets using wide ranges of parameters
and present the results for a file-provider graph. This shows that this method reaches very good
performances and that internal links play a key role in the dynamics of real-world bipartite
graphs.

The paper is organized as follows. We review related work in Section 2 and present the
bipartite framework, including the notion of internal links, in Section 3. We then formally state
the considered problem and its assessment in Section 4. We present in Section 5 our prediction
method and a basic method which we consider for comparison purpose. We finally present our
experimental setup in Section 6 and the results of experiments in Section 7. We discuss our
conclusions and perspectives in Section 8.

2 Related work

Link prediction is a key research problem in network dynamic analysis. Several works study this
problem on classical (non-bipartite) graphs. Most of them are based on measures of similarity
between nodes. For instance, in [27] the authors examine several topological measures (such
as Jaccard coefficient, Adamic/Adar coefficient, SimRank, etc.) based on node neighborhoods
and the set of all paths between nodes. They use these measures for ranking possible future
co-authors collaborations. In [20] the author proposes to use another topological measure called
generalized clustering coefficient. In [18, 31] the authors add several non-topological measures
based on node attributes (such as keyword match, number of papers, geographic proximity, KL-
divergence of two nodes’ topic distribution, etc.) and they use a supervised learning algorithm to
perform link prediction. In a similar way, the authors of [7] predict co-authoring of publications
by using topological measures computed in the co-authoring graph and indirect topological
measures computed using the co-author graph (where two papers are linked if they are signed
by a same author). The authors of [39] add another measure (local probabilistic model) to
estimate the co-occurrence probability of two nodes, and in [37] the authors extend this by
incorporating available temporal information. Finally, the authors of [11] use a hierarchical
decomposition of a social network and use it for predicting missing links. They generate a set of
hierarchical random graphs, and they compute average probability of connection between two
nodes within these hierarchical random graphs.

Works presented above deal with classical (non-bipartite) graphs, and are not directly appli-
cable to bipartite graphs. In [21], the authors adapt some topological measures used in classical
graphs for predicting links in bipartite graphs. For each possible link (u, v), the authors compare
the neighbors of u in the bipartite graph and neighbors of neighbors of v. They also study the
set of all paths between nodes, in the bipartite graph. Going further, the authors of [6] consider
two transformations of the bipartite graph into a classical one, then for predicting link (u, v)
they consider the classical graph containing u, and they study the topological measures between
u and the neighbors of v in the bipartite graph, and conversely.

The authors of [13] study two prediction problems in bipartite graphs in which links appear
and disappear over time: predicting new links aims at predicting links that will appear and
were never observed before; predicting all links aims at predicting the links that will exist
in the considered period, including links that were previously observed. They use matrix-
and tensor based methods to do so. In [24, 23], the authors study link prediction in growing
(bipartite) graphs. They argue that, in practice, the growth changes the eigenvalues but leaves
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Figure 1: An example of bipartite graph G (left), and its ⊥-projection G⊥(right).

the eigenvectors largely unchanged. Studying the eigenvalues evolution allows to propose a
growth model for a given network, and use it for link prediction.

Another research problem is closely related to link prediction in bipartite graphs: the rec-
ommendation problem [34]. Recommendation systems are used to suggest items to users, such
as products to customers for instance. Notice however that the two problems are quite differ-
ent: recommendation aims typically at finding a small number of products of interest for each
customer; prediction aims at finding links that will appear in the future. Predicting that a
given node will have a huge number of new links while many others will not have any is of little
interest regarding recommendation but may be a great success regarding prediction.

Various approaches have been developed for recommendation [5, 3, 22], with collaborative
filtering being the most successful and widely used approach [22]. Two main approaches of
collaborative filtering have been proposed, both based on the idea that similar users will purchase
similar items and that users will purchase items similar to the ones they already purchased. The
first approach consists in predicting the rating of a given user for a given item [33]. It relies on
known rating data (e.g. explicit users opinions for items, rated on a scale of 1 to 5). The second
approach consists in ranking the most relevant items for a given user in order of decreasing
interest, and then in recommending the top N items to this user [12, 28]. This approach does
not require explicit ratings but only the information of which users adopted which items, and is
the most similar to link prediction. We will use such an approach in this paper for the purpose
of comparison with our method, see Section 5.2.

3 The bipartite framework

We present here bipartite graphs and their transformations into (weighted) classical graphs,
called projection. We also introduce a new class of links in bipartite graphs, which we call
internal links. These links are at the core of our work.

3.1 Bipartite graphs, projections, and internal links

A bipartite graph G = (⊥,⊤, E) is defined by a set ⊥ of bottom nodes, a set ⊤ of top nodes
and a set E ⊆ ⊥ × ⊤ of links. The key point is that links exist only between a node in ⊥ and
one in ⊤. We denote by N(u) = {v ∈ (⊥ ∪⊤), (u, v) ∈ E} the neighborhood of a node u in G.
If u ∈ ⊥ then N(u) ⊆ ⊤, and conversely. More generally, given any set of nodes S ⊆ (⊥ ∪ ⊤),
we denote by N(S) its neighborhood: N(S) =

⋃

u∈S N(u).
The ⊥-projection of G is the graph G⊥ = (⊥, E⊥) in which (u, v) ∈ E⊥ if u and v have at

least one neighbor in common in G: N(u) ∩N(v) 6= ∅. In other words, there is a link between
u and v in G⊥ if u and v are linked to a same top node in G. As a consequence, each top node
induces in G⊥ a clique between its neighbors in G. See Figure 1 for an example. We denote by
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N⊥(u) the neighborhood of a node u in G⊥: N⊥(u) = {v ∈ ⊥, (u, v) ∈ E⊥} = N(N(u)). The
⊤-projection of G, denoted by G⊤, is defined dually.

We now introduce a special class of links, called internal links, which play a key role in the
whole paper.

Definition 1 (internal links) Let us consider a bipartite graph G = (⊥,⊤, E) and the bi-
partite graph G′ = (⊥,⊤, E ∪ {(u, v)}) obtained by adding the link (u, v) ∈ ⊥ × ⊤ to G, with
(u, v) /∈ E. The link (u, v) is internal if G⊥ = G′

⊥.

In other words, an internal link in a bipartite graph G is a pair of nodes (u, v) such that
adding the link (u, v) to G does not change its ⊥-projection. In Figure 1 for instance, (B, l) is
an internal link. Indeed, all neighbors of l in G, namely N(l) = {C, D, E}, are already linked
to B in G⊥: the pairs of bottom nodes (B, C), (B, D) and (B, E) already have a neighbor in
common in G, respectively, i, j and k. Adding link (B, l) to G increases their number of common
neighbors to 2 and thus does not change ⊥-projection.

As this example indicates, internal links have a characterization in terms of neighborhood
which we give now.

Lemma 1 Given a bipartite graph G = (⊥,⊤, E), a pair of nodes (u, v) in (⊥ × ⊤) \ E is an
internal link for G if and only if N(v) ⊆ N(N(u)).

Proof : Let us consider a pair of nodes (u, v) in (⊥ × ⊤) \ E and let G′ = (⊥,⊤, E′ =
E∪{(u, v)}) be the bipartite graph obtained by adding the link (u, v) to G. Then, by definition,
E′

⊥ = E⊥ ∪ {(u, x), x ∈ N(v)}.
Suppose now that (u, v) is an internal link, i.e. E⊥ = E′

⊥. Then all links (u, x) in the
expression above already belong to E⊥. Therefore, for each x ∈ N(v), there exists y in ⊤, such
that y ∈ N(u) ∩ N(x). By symmetry, x ∈ N(y) and y ∈ N(u) therefore, x ∈ N(N(u)) and so
N(v) ⊆ N(N(u)).

Suppose now that N(v) ⊆ N(N(u)). Then for each node x in N(v) ⊆ N(N(u)), there exists
y in ⊤, such that x is a neighbor of y and y is a neighbor of u. Thus, by definition of the
projection, (u, x) ∈ E⊥, and so E⊥ = E′

⊥ and the link (u, v) is internal.
�

We finally introduce the notion of induced links, which will be useful in the following.

Definition 2 (induced links) Given a bipartite graph G = (⊥,⊤, E), the set of links induced
by any pair of nodes (u, v) in (⊥×⊤) is: ⊥(u, v) = {u} ×N(v) = {(u, w), w ∈ N(v)}.

In Figure 1, for instance, ⊥(A, j) = {A} × N(j) = {(A, B), (A, D)}. Notice that E⊥ =
⋃

(u,v)∈E ⊥(u, v): the links of the ⊥-projection of G are the links induced by all the links of G.
By definition, a pair of nodes (u, v) ∈ (⊥×⊤) \ E is an internal link if and only if all the links
it induces are already in G⊥. In Figure 1, for instance, ⊥(B, l) = {(B, C), (B, D), (B, E)} ⊆ E⊥

and therefore (B, l) is an internal link.

3.2 Weighted projections

As explained for instance in [25], G⊥ contains much less information than G. In particular,
the fact that u and v are linked in G⊥ means that they have at least one neighbor in common
in G but says nothing on their number of common neighbors. Several approaches are used for
weighting the links of the ⊥-projection in order to capture such information. We present the
main ones in this section (examples are displayed in Figure 2).
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Figure 2: A bipartite graph G (left) and its ⊥-projection with the different weight functions
defined in Section 3.2.

First, the weight of link (u, v) may be defined as the number of (top) neighbors that u and
v have in common in the bipartite graph, called sum:

σ(u, v) = |N(u) ∩N(v)|.

The σ weight function has been used for instance to estimate the probability of collaboration
between authors [29].

Notice that if u and v both have many neighbors, then σ(u, v) will naturally tend to be high.
Conversely, if u and v have only few neighbors but these neighbors are the same, then σ(u, v) is
low, which does not reflect the fact that u and v are very similar. To capture this, one may use
the Jaccard coefficient:

γ(u, v) =
|N(u) ∩N(v)|

|N(u) ∪N(v)|
.

This quantity has been used for instance in the context of peer-to-peer exchange analysis to
capture similarity between peers [26].

The value of γ(u, v) may however be strongly biased if one of the two nodes has many
neighbors and the other one only few: the value would then be very low, even if all neighbors of
one node are neighbors of the other. To avoid this, variants of the Jaccard coefficient, overlap
and cosine, have been proposed in the literature [36, 35]:

γove(u, v) =
|N(u) ∩N(v)|

min(|N(u)|, |N(v)|)
γcos(u, v) =

|N(u) ∩N(v)|
√

|N(u)| × |N(v)|
.

From this point of view, though, nodes play an unbalanced role: a ⊤-node x has an influence
on the similarity between |N(x)|×(|N(x)|−1)

2 pairs of ⊥-nodes. When N(x) is large, this is huge;
on the contrary, if a ⊤-node only has two neighbors then it probably indicates a significant
similarity between them. To capture this, one may consider that each ⊤-node votes for the
similarity between its neighbors and that the sum of its votes is only one (it has only one voice
to distribute). This leads to the delta function:

δ(u, v) =
∑

x∈N(u)∩N(v)

2

|N(x)| × (|N(x)| − 1)
.

In Figure 2, for instance, nodes i and j vote respectively 1
3 and 1 for link (B, C), so δ(B, C) =

1
3 +1. A similar quantity has been used in [1] to capture the similarity between two home pages
as a function of the features they share.

All weight functions above intuitively capture similarity between nodes. One may also use
weight functions to capture other features, like the activity of nodes in the network. This leads
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for instance to compute the product of the number of neighbors of u and v in the bipartite
graph [4, 29], called attachment:

ρ(u, v) = |N(u)| · |N(v)|,

which reflects the expectation that u and v may have neighbors in common: if links were placed
at random then the probability that (u, v) is a link would be proportional to ρ(u, v).

All weighting functions presented above are natural and capture relevant informations about
a bipartite graph. Each has its own strengths and weaknesses, and up to our knowledge there
has been only limited comparison between them until now. By comparing their performance in
the context of link prediction below, we expect to give some insight on their respective relevance
in this context, see in particular Section 7.3.

4 The bipartite link prediction problem

Let us consider a dynamic bipartite graph defined by a set of n timestamped links D =
{(ti, ui, vi), i = 1...n}. Let G = (⊥,⊤, E) be the graph observed from a given instant a to an-
other instant b > a: ⊥ = {u, ∃(t, u, v) ∈ D s.t. a 6 t < b}, ⊤ = {v,∃(t, u, v) ∈ D s.t. a 6 t < b}
and E = {(u, v),∃(t, u, v) ∈ D s.t. a 6 t < b}. We call G the reference graph and [a, b[ the
reference period.

Now let us consider an instant c > b. This induces a set E′ of links added to G during
the period [b, c[, which we call the prediction period: E′ = {(u, v),∃(t, u, v) ∈ D s.t. b 6 t <
c} ∩ (⊥ × ⊤ \ E). Notice that we consider only the links between nodes of G (we ignore new
nodes appearing in the period [b, c[) which are not present in G (we consider links in ⊥×⊤ \E
only).

In this framework, the goal of a link prediction method is to find a set P of predicted links
which contains many of the links in E′ but only few which are not in E′. Notice that in the
extreme case where one predicts all possible links, i.e. P = ⊥ × ⊤ \ E, then one succeeds in
predicting all links of E′ but also predicts many links which are not in E′. Conversely, predicting
no link at all, i.e. P = ∅, trivially does not predicting links not in E′ but fails in predicting any
link in E′.

Evaluating the performances of a prediction method therefore consists in evaluating its suc-
cess in reaching a tradeoff regarding these two objectives, which is non-trivial. We present below
a classical method to do so [36, 10], which we use in this paper.

Let us denote by P the set of links that the method predicts and will not appear: P =
(⊥×⊤\E)\P . Figure 3 illustrates the four possible cases which may occur during link prediction:
the set P ∩E′ of true positives is the set of appearing links that the method successfully predicts;
the set P \ E′ of true negatives is the set of unpredicted links which indeed do not appear;
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conversely, the false positives are the links in P \ E′, i.e. the links which we predicted but do
not appear, and the false negatives are the links in P ∩ E′.

The aim of a link prediction method is to maximize the number of true positives and negatives
while minimizing the number of false positives and negatives. This is captured by two quantities,
called precision and recall.

The precision is the fraction of true positives among the predicted links, i.e. |P∩E′|
|P | . In other

words, it is the probability that the method is right when it predicts that a given link will
appear, and therefore is a measure of correctness.

The recall is the fraction of true positives among the appearing links, i.e. |P∩E′|
|E′| . In other

words, it is the probability that an appearing link will indeed be predicted by the method, and
so is a measure of completeness.

As explained above, there is a tradeoff between precision and recall, as, in general, improving
one degrades the other and conversely. In order to capture this in a single value, which often is

more convenient, one generally considers the F-measure, 2×|P∩E′|
|P |+|E′| , which is the harmonic mean

of precision and recall [38]. The goal of a prediction method then is to maximize the F-measure.

5 Bipartite prediction methods

In this section, we introduce our link prediction method for bipartite graphs, which we call
internal link prediction. We also present a typical collaborative filtering method which we use
for comparison in the next sections.

5.1 Internal link prediction

The key feature of our prediction method is that it focuses on internal links: it predicts internal
links only. The intuition behind this is that two bottom nodes which already have a common
neighbor in G (i.e. they are linked in G⊥) will probably acquire more in the future. Instead, if
two nodes have no common neighbor in G, then they will probably still have none in the future.
The links that can be added to G which fit both criteria are precisely internal links. We will see
in Section 6.2 that a large fraction of the links which appear are indeed internal.

Going further, two bottom nodes with many common neighbors in G will probably have more
in the future. More generally, all the weight functions presented in Section 3.2 are measures
(from different points of view) of our expectation that two nodes having neighbors in common
probably will have more in the future. Therefore, we expect that the links that will appear are
the internal links inducing ⊥-links with high weights.

This leads to the following prediction method, which we call internal links prediction. Let us
consider a weight function ω like the ones described in Section 3.2, and a given weight threshold
τ. We denote by E⊥τ = {(u, w) ∈ E⊥, ω(u, w) ≥ τ} the set of links in the projection that have
a weight larger than or equal to τ. We then predict all the internal links which induce at least
one link in E⊥τ.

Figure 4 shows an example of internal link prediction using the Jaccard weight function, γ.
The set of internal links of G is {(B, l), (C, k), (D, k), (E, j)}; let us focus on the internal link
(B, l). It induces (B, C), (B, D), and (B, E). Given a threshold τ we predict (B, l) if one of
these links has weight at least τ. For instance:

• if τ = 1
4 , all links in the projection have a weight larger than or equal to τ, and so we

predict all possible internal links in the bipartite graph, including (B, l);

• if τ = 1
3 , only 5 links in the projection have weight larger than or equal to τ, including

(B, C), which is induced by (B, l); we therefore predict (B, l);
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4 , to 1
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3 .

• if τ = 2
3 , only one link has a weight larger than or equal to τ, and it is not a link induced

by (B, l); therefore we do not predict (B, l).

Algorithm 1 provides the details of the method useful for implementation, and Theorem 1 shows
its complexity.

Algorithm 1: Internal link prediction

Input: bipartite graph G = (⊥,⊤, E), weight function ω, threshold τ

Output: set P of predicted links

P ← ∅
for u ∈ ⊥ do

Nbot← ∅
for v ∈ N(u) do

for w ∈ N(v)\{u} do
Nbot← Nbot ∪ {w}
compute ω(u, w)

Iu ← ∅
d← 0, 0, . . . , 0
m← ∅
for w ∈ Nbot do

for v ∈ N(w) do
if ω(u, w) > τ then

m ← m ∪ {v}

d[v] ← d[v] + 1

for v ∈ m do
if |N(v)| = d[v] then

Iu ← Iu ∪ {v}

P ← P ∪ {(u, v), v ∈ Iu}
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Theorem 1 Algorithm 1 performs internal link prediction on a bipartite graph G = (⊥,⊤, E) in
time O(∆⊥|E|), where ∆⊥ = maxu∈⊥ |N⊥(u)| is the largest degree in G⊥, and space O(|⊤|+|⊥|)
in addition to the space needed for storing G.

Proof : We first show the termination and correctness of our algorithm. The algorithm consists
of imbrications of for loops over finite and static sets, so it necessarily terminates.

To show its correctness, we must show that it predicts all the internal links that induce links
in E⊥τ, i.e. links with weight larger than or equal to τ, and only those links.

The algorithm consists in a loop over all nodes u in ⊥, with three main parts, each consisting
in a for loop.

The first part computes N⊥(u), denoted by Nbot in the algorithm to emphasize that it is not
precomputed nor stored, and the weights of the corresponding links. The nodes w added to Nbot
are exactly those in N(N(u)), which by definition is exactly N⊥(u). Therefore Nbot = N⊥(u)
at the end of the first part of the loop. We do not detail the weight computation here, because
it depends on the weight function considered. We assume that it can be computed with the
same time complexity overhead as N⊥, which is true for all the weight functions presented in
Section 3.2.

The second part does two things. First it stores in a set m the nodes v such that (u, v)
induces a link (u, w) ∈ E⊥τ (notice that (u, v) is not necessarily an internal link). Indeed, a
node v is added to m as soon as it has a neighbor w ∈ ⊥ such that (u, w) ∈ E⊥τ.

This loop also stores in d[v] the number of neighbors of v which are neighbors of u in G⊥.
At the end of the second part of the loop, the nodes v for which d[v] = |N(v)| are exactly the
nodes v such that (u, v) is an internal link. Indeed, d[v] is incremented for each w ∈ N(v) such
that w ∈ N⊥(u). Therefore d[v] = |N(v)| if and only if N(v) ⊆ N⊥(u) = N(N(v)), i.e. if and
only if (u, v) is an internal link, from Lemma 1.

The third part of the loop then computes the intersection between the nodes v which cor-
respond to internal links (those for which d[v] = |N(v)|) and the nodes corresponding to links
which induce at least one link (u, w) ∈ E⊥τ (the nodes in m).

Before entering in the details of the complexity analysis, let us discuss how sets may be
efficiently managed in our algorithm. A set s of nodes in ⊤ (resp. ⊥) may be represented by
an array indexed by nodes in ⊤ (or ⊥), such that s[v] = 1 if and only if v ∈ s, together with
an array is containing the indexes of nodes in s, and an integer ns representing the number of
nodes in s. Therefore listing all nodes in s simply consists in listing the ns first values of is.
Adding a node v to s is performed in two steps: if s[v] = 1, do nothing; otherwise, set s[v] to
1, increment ns, and set is[ns] to v. To reinitialize s to ∅, iterate set s[is[k]]← 0 for all k ≤ ns,
then set ns = 0. Finally, adding an element to a set requires constant time, and setting a set
to ∅ requires as many operations as |s|, which is necessarily bounded by the time needed to
populate the set, and therefore does not create any time complexity overhead. In our algorithm,
the array d may be managed in a similar way: an additional array stores the indexes of nodes
for which d[v] 6= 0, which allows to reset d to 0 without iterating over all nodes in ⊤.

This leads to the space complexity of our algorithm. With the encoding above, a set of nodes
in ⊤ (resp. ⊥) requires Θ(|⊤|) (resp. Θ(|⊥|)) space. Therefore, although the number of links
in G⊥ is huge in general compared to |E|, our algorithm only requires Θ(|⊤| + |⊥|) space in
addition to the space needed for storing its input G and its output P (which we may choose not
to store).

Let us now study the time complexity of the algorithm. The main loop runs over all nodes
in ⊥ and performs three sets of operations. We will study the complexity of these parts inde-
pendently.
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The first part of the loops performs Θ(|N(v)|) operations for each node v ∈ N(u). Therefore
the total number of operations for the first part of the main loop is of the order:

Θ





∑

u∈⊥

∑

v∈N(u)

|N(v)|



 = Θ

(

∑

v∈⊤

|N(v)||N(v)|

)

.

We have that |N(v)| ≤ δ⊤, where δ⊤ = maxv∈⊤ |N(v)|. Therefore the above quantity can be
bounded:

Θ

(

∑

v∈⊤

|N(v)||N(v)|

)

⊆ O

(

δ⊤
∑

v∈⊤

|N(v)|

)

= O (δ⊤|E|) .

The second part of the loop performs Θ(|N(w)|) operations for each node w ∈ N⊥(u). The
total number of operations in this part of the loop is therefore performed in time:

Θ





∑

u∈⊥

∑

w∈N⊥(u)

|N(w)|



 = Θ

(

∑

w∈⊥

|N⊥(w)||N(w)|

)

.

This expression can be bounded in two ways, by considering that |N⊥(w)| ≤ ∆⊥ (where ∆⊥ =
maxu∈⊥ |N⊥(u)| is the largest degree in G⊥) or that |N(w)| ≤ δ⊥ (where δ⊥ = maxv∈⊥ |N(v)|).
In the first case we obtain

Θ

(

∑

w∈⊥

|N⊥(w)||N(w)|

)

⊆ O

(

∆⊥

∑

w∈⊥

|N(w)|

)

= O (∆⊥|E|) .

In the second case we obtain

Θ

(

∑

w∈⊥

|N⊥(w)||N(w)|

)

⊆ O

(

δ⊥
∑

w∈⊥

|N⊥(w)|

)

= O (δ⊥|E⊥|) .

Finally, the third part of the loop iterates over all nodes in m. Since m was computed in the
second part of the loop, the number of operations in the third part of the loop is bounded by
the one for the second part of the loop, therefore we do not need to evaluate it further.

The overall complexity of the algorithm is therefore in the order of

O (δ⊤|E|+ min(∆⊥|E|, δ⊥|E⊥|)) ⊆ O ((δ⊤ + ∆⊥)|E|) ⊆ O (∆⊥|E|) ,

because δ⊤ ∈ O(∆⊥) since each node in ⊤ with degree d induces a clique of d nodes, each of
them having a degree at least d− 1 in G⊥.

�

5.2 Collaborative filtering prediction

As explained in Section 2, typical collaborative filtering approaches consist in predicting that
⊥-nodes tend to create links to the ⊤-neighbors of ⊥-nodes which are similar to themselves
(clients will buy products that similar clients already bought). More precisely, such methods
first select for each ⊥-node u the set of k ⊥-nodes which are the most similar to u and then
the N ⊤-nodes the most strongly linked to these nodes, for given parameters k and N . Here,
natural notions of similarity between ⊥-nodes are provided by the weighted ⊥-projection.
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Figure 5: Example of collaborative filtering prediction. First row (left to right): an
example of bipartite graph G, the set of all possible links that may appear, the Jaccard weighted
⊥-projection of G (G⊥, γ), and the result of collaborative filtering prediction for node A. Second
row (left to right): the result of collaborative filtering prediction for B, C, D and E. In this
example, k = 2 (we consider 2 most similar neighbors) and N = 1 (we predict 1 link with highest
score).

We will therefore use the following collaborative filtering method [8]: given a weight function
ω, we consider for each ⊥-node u the set Uk ⊆ N⊥(u) of its k neighbors with largest weight.
Then for each v ∈ N(Uk)\N(u), we compute the score s(u, v) of the link (u, v) as the sum of
the weights ω(u, w), for each w ∈ N(v) ∩ Uk:

s(u, v) =
∑

w∈Uk∩N(v)

ω(u, w).

There are other possible ways to compute the score [14, 41, 9, 15, 19], however in this paper
we restrict ourselves to the formula above which is typical. Finally, the collaborative filtering
method predicts for each node the N links with highest scores.

Figure 5 presents an example of collaborative filtering using the Jaccard weight function γ,
k = 2 and N = 1. For instance, node E has three neighbors in the ⊥-projection: N⊥(E) =
{B, C, D}. The method then considers the k = 2 most similar ones, i.e. the ones linked to E
with the largest weight in G⊥. As (E, B) and (E, C) have the same weight, the method chooses
at random between B and C. Suppose that U2 = {B, D}. The method then computes the score
of links (E, v) for all v ∈ (N(B) ∪N(D))\N(E), leading to s(E, j) = γ(E, B) + γ(E, D) = 7

12 ,
and s(E, i) = γ(E, B) = 1

4 . Finally, as N = 1, it predicts the link with highest score, (E, j).

11



Algorithm 2: Collaborative filtering

Input: bipartite graph G(⊥,⊤, E), weight function ω, k, N
Output: set P of predicted links

P = ∅
for u ∈ ⊥ do

Nbot← ∅
for v ∈ N(u) do

for w ∈ N(v)\{u} do
Nbot← Nbot ∪ {w}
compute ω(u, w)

U ← sort(Nbot, ω)
Uk ← head(U, k)
s← 0, 0, . . . , 0
for w ∈ Uk do

for v ∈ N(w)\N(u) do
s[v] ← s[v] + ω(u, w)

Pu ← sort(s)
P ← P ∪ {(u, v), v ∈ head(Pu, N)}

We present details in Algorithm 2. The first part of the loop computes N⊥(u). The cor-
responding time complexity is therefore in the order of O (δ⊤|E|) ⊆ O(∆⊥|E|), as detailed in
the proof of Theorem 1 (notations are defined there). The complexity of the second part of the
loops depends on parameters k and N . The sort and head instructions are used to compute
the k and N largest values in N⊥ (according to weight function ω) and s, respectively. This
can be done in constant time if k and N are constant, but we kept this notation to make the
algorithm easier to read.

The loop iterating over all nodes w ∈ Uk performs |N(w)| operations at each step. This
loop is repeated for all nodes u ∈ ⊥. The total number of operations performed is bounded by
O(
∑

u∈⊥

∑

w∈N⊥(u) |N(w)|) ⊆ O(∆⊥|E|).
The total time complexity is therefore in the order of O(∆⊥|E|), as Algorithm 1. The space

complexity, besides the space needed to store G, is of the order of |⊤| + |⊥|, this space being
needed for storing Nbot, U, Uk, and s. This is the same as Algorithm 1.

6 Experimental setup

Evaluating our method in practice requires the availability of large scale bipartite data with their
dynamics. One natural source for such data might be benchmarks for recommendation systems.
However, such datasets often do not contain temporal information or have been filtered to fit
recommendation needs (for instance, nodes with a small degree have been removed, as well as
large degree ones). This makes them unusable in our context.

We finally conducted experiments on various datasets, in particular user-tag graphs from
delicious2 [16] as well as user-group and user-comment graphs from Flickr3 [32]. We present
here results obtained with a file-provider dataset [2] which are representative of all obtained
results.

2http://www.delicious.com/
3http://www.flickr.com/
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duration x of the reference period [0, x[
x = 6 hours x = 12 hours x = 1 day x = 3 days x = 7 days

number of ⊥-nodes (peers) 82, 372 122, 817 160, 159 356, 197 705, 634
number of ⊤-nodes (files) 1, 474, 048 2, 060, 530 2, 456, 205 3, 938, 639 5, 703, 258
number of links in E 2, 764, 424 4, 259, 764 5, 634, 865 11, 851, 292 22, 334, 912
number of links in E⊥ 11, 792, 614 27, 519, 054 54, 182, 976 273, 674, 542 1, 045, 199, 202

Table 1: Number of ⊥-nodes (peers), ⊤-nodes (files), and links in the bipartite graph G and in
its ⊥-projection G⊥, for five different reference period durations x.

We first describe this real-world dataset. We show that its amount of internal links is high,
which ensures the relevance of predicting internal links. We then discuss appropriate parameters
for our experimentation for both our method and the collaborative filtering one. We present the
results of our experimentations in Section 7.

6.1 File-provider dataset

We use for our experiments a measurement of a peer-to-peer file exchange network [2]. It consists
of a recording of messages received and sent by a large eDonkey server during almost 10 weeks,
with queries from users for files, and answers from the server indicating which users provide
which files. We focus here on file-provider relations, leading to a set D = {(ti, ui, vi)} of triplets
indicating that the server pointed peer ui as a provider for file vi at time ti.

Using the formalism described in Section 4, each triplet corresponds to a link between a
⊥-node (a peer) and a ⊤-node (a file) at time ti. For two given timestamps x and y we consider:

• the reference period [0, x[ and the corresponding reference graph G = (⊥,⊤, E) induced
by links observed from the beginning of the measurement (time 0) to time x, and

• the prediction period [x, y[ and the corresponding set of links E′ ⊆ (⊥×⊤) \ E added to
G between x and y.

The ⊥-projection G⊥ of G is the graph in which two peers are linked if they provide one or more
files in common.

Basic features of the reference graph G and its projection G⊥ are presented in Table 1, for
different reference period durations x. Notice that the number of ⊤-nodes (files) is much larger
than the number of ⊥-nodes (peers), which is mostly due to the fact that we consider only peers
which provide at least one file (most only download files). Notice also that the number of links

in the ⊥-projections is huge. This is due to the fact that each ⊤-node v induces |N(v)|×(|N(v)|−1)
2

links in the ⊥-projection; see [25] for a discussion of this. To this regard, it is crucial that the
methods considered in this paper need not store G⊥, unlike most other approaches.

6.2 Amount of internal links

In order to gain more insight on the dynamics of the considered data, let us consider the
number |E′| of new links appearing during the prediction period [1, y[, for y = 2, ..., 55 days, for
a reference graph G obtained with a reference period [0, 1 day[, presented in Figure 6 (left). The
number of new links grows rapidly with the size of the prediction period, showing that many
new links appear between nodes of the reference period, even after a long time. As one may
expect, though, the number of new links grows faster during the first few days.

The fraction of internal links among these new links is presented in Figure 6 (right). It is very
high, above 35%, for prediction periods of up to 10 days, with a maximal at almost 45%. The
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Figure 6: Number of new links (left) and fraction of internal links among them (right) as
functions of the prediction period duration (horizontal axis, in days), with a reference period
[0, 1 day[ of one day.
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Figure 7: Number of new links (left) and fraction of internal links among them (right) as
functions of the reference period duration (horizontal axis, in hours), with a prediction period
[x, x + 15 days[ of 15 days.

fraction of internal links decreases as the length of the prediction period grows, but it remains
above 25% for prediction periods of up to 50 days.

Let us now observe how the number of new links |E′| and the fraction of internal links among
them evolves as the duration of the reference period grows. We consider reference periods [0, x[,
for x = 1, 2, ..., 48 hours, and for each x we consider the 15 day prediction period [x, x+15 days[;
and present the number of new links in Figure 7 (left). We observe that it grows rapidly with
the reference period duration x.

The fraction of internal links among these new links is presented in Figure 7 (right). It
increases from 35% to 45% for reference periods from 1 to 6 hours. After this it decreases slowly
but remains above 28% for reference periods of up to 48 hours.

These statistics show that the fraction of internal links is very high in the considered dataset,
even for long reference and prediction periods, which is also true for other datasets we tested.
This motivates our approach of focusing on this special class of links.
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Figure 8: Figure 8: Performances of two prediction methods (left: internal link prediction; right:
collaborative filtering with k = 50) for the reference period [0, 1 day[ of one day, the prediction
period [1, 16 days[ of 15 days, and the Jaccard weight function. We plot the precision, recall,
and F-measure (vertical axis), defined in Section 4, as functions of the threshold τ (left), and
the number N of predicted links per node (right).

6.3 Parameters for prediction methods

The performances of link prediction methods depend on various parameters. We explore in depth
in the next section (Section 7) the impact of the reference and prediction periods durations, as
well as the impact of the weight functions. Even when these parameters are given, though,
other parameters play a role: the weight threshold τ for internal link prediction and the values
of N and k for collaborative filtering prediction. Exploring all possible values for all these
parameters and their combinations is intractable in practice, and would actually have limited
interest here as we are mostly concerned with qualitative results. We explain in this section how
we choose values for these parameters for our experiments while avoiding extensive exploration
of all possible values.

Internal link prediction

As illustrated in Figure 8 (left), the performances of internal link prediction for given reference
and prediction periods and a given weight function depend on the weight threshold τ. If τ = 0
then all possible internal links are predicted, which corresponds in this example to 33% of all
appearing links. However, many of these links do not actually appear, and so the corresponding
precision is almost zero. Instead, if a very high threshold is used then only few internal links are
predicted, and so the obtained recall is almost zero. However, most of these few links do appear,
which corresponds to a precision of almost 100%. More generally, the precision increases with
the threshold value, and the recall decreases. The F-measure which captures a tradeoff between
the two reaches its maximal value of 0.28 for τ = 0.4 in this example.

To avoid taking into account the impact of the threshold τ on the internal link prediction
method, we will select in the experiments of Section 7 the value of τ which maximizes the F-
measure. For instance, when studying the impact of the prediction period duration x for a given
reference period (Section 7.1) we will plot the maximal value of the F-measure as a function of
x (Figure 9, left).
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Figure 9: Maximal value of the F-measure (vertical axis) as a function of the prediction period
duration (horizontal axis, in days) for both link prediction methods with different weight func-
tions. In order to help comparison between different reference period durations, we used the
same scale for the vertical axes. Notice however that the scales are not the same for the two
methods because otherwise the collaborative filtering plots would hardly be readable.16



Collaborative filtering

As explained in Section 5.2, the collaborative filtering method depends on a parameter k which
is the number of similar neighbors considered for each node. We have experimented the perfor-
mances of the collaborative filtering algorithm for three values of k: 10, 50 and 100. Results
indicate that the precision is slightly better for small values of k, but recall is best for large
values of k. The maximal F-measure was obtained for k = 50, therefore we will use this value
in all our experiments in the following.

The other parameter, N , is the number of links predicted for each node. It also has a strong
impact on the performance of the collaborative filtering method. Figure 8 (right) shows that
the precision decreases and the recall increases when N increases.

Again, to avoid taking into account the impact of N on the performances of the collaborative
filtering method, we will select in the following the value of N which maximizes the F-measure.

7 Experimental results

In this section, we study the performances of our approach for link prediction and compare it
to the collaborative filtering approach in the experimental framework described above. We first
explore the impact of the prediction period duration, which allows us to choose a relevant value
for this parameter for the rest of our comparisons. We then study the impact of the reference
period duration, and again select a relevant value for this parameter. Finally, we compare the
performances of the different weight functions for these parameters.

7.1 Impact of the prediction period duration

In order to study the impact of the prediction period duration we consider several reference
periods [0, x[ (from x = 1 hour to x = 7 days), and several prediction periods [x, y[ (y =
x + 1 day, y = x + 2 days, ..., y = x + 49 days). We then compute, for each considered reference
period duration, the maximal value of the F-measure observed over all values of the threshold
τ (for internal link prediction) and all values of N (for collaborative filtering), and plot it as a
function of the prediction period duration, as explained in Section 6.3.

Results are presented in Figure 9. The following key facts appear clearly:

• all plots have the same global shape (a fast increase followed by a slow decrease or steady
regime), although their amplitude decreases when the reference period duration increases
(we will deepen this in the next section);

• different weight functions give different results, which we deepen in Section 7.3;

• in most cases, and for all weight functions which perform well, internal link prediction
surpasses significantly collaborative filtering (notice the different scales for the vertical
axes for the two methods).

Finally, a prediction period of 15 days gives good results, and is representative of a wide range
of prediction period durations for all reference period durations and weight functions. We will
therefore use this prediction period duration in all the following.

7.2 Impact of the reference period duration

In order to investigate the impact of the reference period duration [0, x[, we vary its duration
x for x = 1, 2, ..., 48 hours, and we use the prediction period [0, x + 15 days[ of 15 days, as
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Figure 10: Evolution of the maximal F-measure (vertical axis) as a function the reference pe-
riod duration (horizontal axis, in hours) for the different weight functions. Left: Internal link
prediction. Right: collaborative filtering. The prediction period duration is 15 days in all cases.

explained in the previous section. We do not consider reference periods longer than 48 hours
days, because, as we can see in Figure 9, longer reference periods lead to poorer performances.
We compute for all cases the maximal value of the F-measure observed over all values of the
threshold τ (for internal link prediction) and all values of N (for collaborative filtering) and plot
it as a function of the reference period duration, as explained in Section 6.3.

Results are presented in Figure 10. The following key facts appear clearly:

• overall, the maximal F-measure decreases with the size of the reference period (except for
very short reference periods with internal link prediction);

• different weight functions give different results, which we deepen in next section;

• in most cases, and for all weight functions which perform well, internal link prediction
surpasses significantly collaborative filtering.

Finally, a reference period of 1 day gives good results, and is representative of a wide range
of reference period durations. We will therefore use this reference period duration in all the
following.

7.3 Impact of the weight function

In this section, we observe the impact of the weight function on both considered prediction
methods. As explained in previous sections, we use reference period [0, 1 day[ and prediction
period [1, 16 days[, which are representative of wide ranges of values for these parameters. We
then compute the precision and recall for all possible values of the threshold τ for internal link
prediction and all possible values of N for collaborative filtering; we plot the obtained precision
as a function of the obtained recall in Figure 11.

A first important observation is that the weight functions considered clearly split into two
classes regarding the performances of internal link prediction (Figure 11, left): sum, Jaccard
and cosine reach very high values of precision, and are also able to reach very good compromises
between precision and recall (like a precision of 50% and a recall of 20%); instead, delta, overlap
and attachment lead to poor performances of internal link prediction. No such behavior is
observable for collaborative filtering (Figure 11, right): all weight functions lead to very similar
results except attachment which performs worse than the others.
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Figure 11: Precision (vertical axis) as a function of recall (horizontal axis), for a 1 day reference
period [0, 1[ and a 15 days prediction period [1, 16 days[, for all weight functions. Left: internal
link prediction; right: collaborative filtering. Each point corresponds to the precision and recall
obtained for a given value of τ or N .

8 Conclusion

In this paper, we introduce a new class of links in bipartite graphs, which we call internal links,
and propose a method which uses them for solving the link prediction problem. We evaluate
the relevance of this method by comparing it to a classical collaborative filtering approach and
perform experiments on various datasets, which show that our method performs very well. We
present in details the results obtained for a file-provider graph in order to illustrate how results
depend on various parameters, including which weight function is used for projection.

Our link prediction method has the following advantages. First, it performs very well, much
better than a collaborative filtering approach, where no other method was previously available.
Moreover, our method is purely structural: it relies on the identification of a specific kind of
links which will probably appear in the future; this gives much insight on the properties of the
underlying dynamics. Finally, the use of weight functions allows to tune the method in order
to reach target tradeoffs in the quality of the prediction: one may use small thresholds to have
excellent precision at the cost of a poorer recall, and conversely.

Our work may be extended in several ways. In particular, other (maybe more specific)
weight functions may be introduced and tested. One may also predict internal links that induce
only links with weight above the threshold (inducing one such link is sufficient in our current
algorithm), or use both ⊤- and ⊥-projections (our current algorithm only uses the ⊥- one).
There is therefore room for improving the method and its results.

Likewise, it would be interesting to conduct more experimentations and compare results
on different datasets. Comparing our method with others, in particular machine learning ap-
proaches like the one presented in [6] is also appealing. Last but not least, our work calls for the
development of link prediction methods for external links (those links which are not internal),
which may be done with such methods or by modifying ours.

Another interesting direction would be to modify our approach in order to perform rec-
ommendation. As already explained, link prediction and recommendation are quite different
problems, but they are strongly related. Just like we adapted collaborative filtering for link
prediction in bipartite graphs, one may adapt our method and evaluate its relevance for recom-
mendation.
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Finally, we think that the notion of internal links introduced in this paper is fundamental
and may be used as a building block in a much wider scope, in particular analysis of bipartite
graphs. Although different, it is close to the notion of redundancy proposed in [25], which is
one of the main statistics currently used for comparing real-world bipartite graphs and random
ones. The fraction of internal links in any bipartite graph and similar statistics based on internal
links may be used for this same purpose, and have significant advantages over redundancy (in
particular, it is not a local measure, and is related to the graph dynamics). We consider this as
one of the main perspectives of our work.
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