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tChara
terizing a

urately the dynami
s of evolving networks (su
h asP2P systems, the internet topology, . . . ) is a di�
ult task, be
ause severalfa
tors 
an introdu
e a bias in the observed properties. In parti
ular, thefa
t that we 
an observe a given system only for a �nite duration intro-du
es a bias, be
ause events o

urring before or after the observation aremissed. Although this bias tends to de
rease when the observation windowlength in
reases, it is di�
ult to quantify its importan
e, or know how fastit de
reases.Here, we introdu
e a general methodology that allows to know if theobservation window is long enough to 
hara
terize a given property.We apply this methodology to the study of several properties in a largeP2P system, using two di�erent and 
omplementary datasets. We show thatan observation window that is too short does indeed indu
e a bias, and thatour methodology allows to dete
t this. We also show that there is no overallsatisfying duration for observing a given system. While some properties 
anbe 
hara
terized with a given observation window length, others 
annot be
hara
terized at all in our datasets, either be
ause the measurement was notlong enough, or be
ause the property is intrinsi
ally not stationary. In either
ase, these properties 
annot be trusted.Keywords:Dynami
s, metrology, bias, measurement, P2P.1. Introdu
tion.Many systems are naturally dynami
. For instan
e in the internet, routers,as and/or links between them are 
reated or deleted [9, 10℄; in P2P networks,Preprint submitted to Computer Networks April 7, 2011



users join or leave the system [13, 12, 8℄, and ex
hange di�erent �les at dif-ferent times; in online so
ial networks users may 
reate or delete a

ounts,or 
ease to be a
tive, and 
reate or delete 
onne
tions with other users [15℄.In all these 
ases, understanding the dynami
s of the system is a keyissue. However, a

urately measuring this dynami
s is a di�
ult task. Inparti
ular, the fa
t that the observation window is ne
essarily �nite indu
esa bias in the observations [11, 13, 12℄. Though this bias tends to de
reasewhen the observation window length in
reases, it is di�
ult to quantify it inpra
ti
e, and know whether it is negligible or not.Another problem is that a small observation window may not be rep-resentative of the whole behavior of the system. For instan
e, measuringthe a
tivity in a P2P system during one hour is not enough to 
apture fullythe dynami
s of user usages, be
ause of day/night a
tivity variations for in-stan
e. However, it is not a priori 
lear whether one day, or two, or oneweek, is long enough.In this paper, we introdu
e a new methodology that allows to rigorously
hara
terize dynami
 metri
s in real-world dynami
 systems. This method-ology is di�erent and 
omplementary to other methodologies existing in theliterature [13, 12℄, and has two main advantages:
• it allows to determine if the observation window length was su�
ientfor a rigorous 
hara
terization;
• it 
an be applied to any property 
hara
terizing the dynami
s of asystem.To illustrate the relevan
e of this methodology, we apply it to the study ofseveral properties in the eDonkey P2P system. We use two di�erent datasetswhi
h provide 
omplementary information.This do
ument is organized as follows. In Se
tion 2, we introdu
e ourmethodology and present the datasets we use. In Se
tion 3 to 7 we applyour methodology to the study of several properties des
ribing the system.We present related work in Se
tion 8, and our 
on
lusions and future workin Se
tion 9.2. Methodology and Data2.1. MethodologySuppose we start observing a dynami
 graph at a time t, for a duration l.We denote by Wt,l this observation window. We are fa
ed with two problems2



if we want to 
hara
terize the graph's dynami
s from the observation of Wt,l.First, l must be long enough for Wt,l to be representative. For instan
e, itseems hopeless to 
hara
terize rigorously the a
tivity in a P2P system afterobserving it for a single hour: at the very least, this does not allow to observethe a
tivity variation a

ording to the time of the day. Se
ond, even if it isrepresentative, the fa
t that l is �nite still indu
es a bias in the observations.Events o

urring before t or after t+ l are not observed, whi
h prevents from
hara
terizing a

urately some quantities (for instan
e, session lengths, ortime 
orrelations between di�erent events). An important point to observeis that the longer the measurement period, the smaller the bias indu
ed.Our methodology addresses these two issues at the same time. Intu-itively, it aims at de
iding if the measurement period Wt,l is long enough to
hara
terize a given property P , i.e. if the bias indu
ed by its �niteness onthe observed property is negligible. If the window Wt,l is long enough, thenif we use a longer window of length l + x, the observed property does not
hange: P (Wt,l) = P (Wt,l+x).In order to de
ide when a window is long enough, we use windows ofin
reasing length Wt,l1 ,Wt,l2 , ..., Wt,ln (l1 < l2 < ... < ln). By studying howthe observed property P (Wt,l1),P (Wt,l2), ...P (Wt,ln) evolves as a fun
tion of
l, we determine if it is 
orre
tly evaluated or not: if it �u
tuates or variesgreatly as l in
reases, then P is 
ertainly not a

urately evaluated. Indeed,a shorter or longer observation window would have yielded a di�erent value.Instead, if P tends to be
ome stable as the window length l in
reases, thenit is probably a

urate.Finally, an important point is that 
hara
terizing a property P onlymakes sense if it is stationary, i.e. if P does not evolve while the mea-surement is under progress. Noti
e however that if it is not stationary, ourmethodology will not be able to provide a 
hara
terization: the observedproperty P will not be
ome stable when the observation window length l in-
reases. If it does be
ome stable, this means both that Wt,l is long enough,and that P is stationary 1.Noti
e that, depending on the property studied, other types of bias 
ano

ur, see for instan
e [13℄. In our 
ontext, some 
ome from the identi�
ationof users and their sessions. We do our best to deal with them in a rigorousway, as we detail in the following se
tions. However, we stress on the point1Note that the system may be stationary with respe
t to a given property P and notanother one P ′; in su
h a 
ase our methodology will provide a 
hara
terization for P andnot for P ′. 3



that our goal here is not to address all kinds of biases at the same time, butto exhibit the role played by the observation window length.Here, most of the properties we study are distributions. In general wewill denote a distribution with a subs
ript k to indi
ate that it is a fun
tionof k, e.g. Pk. To study how an observed distribution Pk evolves with thelength of the observation window, we will �rst plot the observed distributions
Pk(Wt,l) for di�erent values of l. We note that we take t as the beginning ofour measurement period, therefore we set t = 0 in the following.In order to 
on�rm more formally the visual observations, we will alsostudy two statisti
al indi
ators whi
h quantify how 
lose two distributions
Pk and Qk are to ea
h other. The Kolmogorov-Smirnov test, or K-S test [3℄
ompares two normalized 
umulative (
omplementary or not) distributions
Pk and Qk. It is equal to the maximum, for all values k, of the distan
ebetween the two 
umulative distributions: KS(Pk, Qk) = maxk |Pk −Qk|. Itis always lower than 1, and the 
loser it is to 0, the more similar the twodistributions are.An important question raised by the K-S test is to know if the distribu-tions di�er by the resulting value at all points, or just at one point. In orderto help us answering this question, we study theMonge-Kantorovi
h distan
e,or M-K distan
e [5℄ whi
h is equal to the mean of the distan
e between thetwo (
umulative) distributions: MK(Pk, Qk) = (

∑
k |Pk − Qk|)/kmax. Twodistributions that only di�er in a single point will therefore have a high K-Stest, but a small M-K distan
e. We use these indi
ators to study how theobserved distribution P (W0,l) evolves: we 
ompute the K-S test (respe
-tively the M-K distan
e) between P (W0,l) and P (W0,lmax

), where lmax is thelength of the longest observation window available for this dataset, and plotthis as a fun
tion of l. Following [17℄, we also study the mean and standarddeviation of Pk(W0,l) as a fun
tion of l.2.2. DataWe use two datasets: the �rst 
onsists in the 
apture of the udp tra�
of a large eDonkey server [1℄. It 
onsists of the queries made by users (forlists of �les mat
hing 
ertain keywords, or for providers for a given �le), andof the server's answers to these queries. There are two types of queries. The�rst one are of the following form:
T IP L,where T is the time at whi
h this query was made, IP is the (anonymized) IPaddress of the user making this query, and L is a list of keywords des
ribing4



the wanted �le. The servers's answer is of the following form:
T IP (F1, S1) (F2, S2) ... (Fn, Sn),where IP is the IP address of the user re
eiving this answer and (F1, S1)

(F2, S2) ...(Fn, Sn) is a list of �le identi�ers mat
hing the keywords, togetherwith one provider for ea
h �le.The se
ond type of queries is of the following form:
T IP F1 F2 ... Fn,where F1 F2 ... Fn is a list of �le identi�ers the user wants to download. Theserver's answers to these queries have the following form:

T IP (F1, S11...S1n1
) (F2, S21...S2n2

) ... (Fn, Sn1...Snnn
),where Sk1...Sknk

is a list of providers for �le Fk.The measurement lasted for 10 weeks, whi
h represents 1 billion mes-sages, with 89 million peers and 275 million �les involved.The se
ond dataset 
onsists in a 
apture of the logins and logouts ofpeers on an eDonkey server [8℄. The login and logout information gives usthe pre
ise session length of users. A small number of session however presentsome problems:
• some sessions do not end in our dataset, most probably be
ause themeasurement stopped before the user dis
onne
ted;
• some sessions of a same user are nested within one another, for instan
ewe observe two 
onse
utive logins followed by two 
onse
utive logouts.It is not possible in this 
ase to know whi
h logout 
orresponds towhi
h login, and therefore we do not know the session length.We dis
arded these two types of sessions in our analysis (they representapproximately 2% of all sessions). This dataset 
ontains more than 200millions of 
onne
tions by more than 14 millions of peers, over a period of

27 days.The two datasets are 
omplementary: the �rst one does not give 
onne
-tion and dis
onne
tion times of users, and the se
ond one does not 
ontaininformation about queries. In the following, we will 
all the �rst dataset thequeries dataset and the se
ond one the logins dataset .5



3. Users' session lengths � queries datasetHere, we study the property Sk 
orresponding to the session length dis-tribution, in the queries dataset. Sin
e the session lengths are not dire
tlyavailable in this dataset (see Se
tion 2.2), we have to infer them from thestudy of the queries made by a user. We detail this below, before turning tothe a
tual study of the session length distribution.3.1. Identi�
ation of users and sessionsIdentifying users in our data is a di�
ult question. We only have a

essto the ip addresses of the 
omputers from whi
h queries are entered. A 
om-puter is identi�ed by an ip address at a given time, but this may 
hange andwe are unable in general to dete
t that a same 
omputer has two di�erentaddresses (be
ause of dynami
 addresses for instan
e) and/or that two 
om-puters are using the same address (be
ause they are behind a same NAT forinstan
e). In addition, a same user may use several 
omputers, and severalusers may use the same 
omputer, making identi�
ation of users even more
hallenging. In the absen
e of a satisfying method for identifying users, thereare two natural solutions: the �rst one 
onsists in 
onsidering that a user
orresponds to an ip address, and the other one 
onsists in 
onsidering thata user 
orresponds to an ip address, together with the udp port used.We use here the �rst one, whi
h allows to 
apture meaningful sessions (asexplained below) and is therefore relevant. Moreover, we performed the sameanalysis by using the se
ond de�nition, whi
h also ensures the reliability ofour results.We infer sessions for a given user by studying the time elapsed between
onse
utive queries.It is natural to 
onsider that two 
onse
utive queries made by a sameuser belong to the same session if the time elapsed between them is short,and belong to two di�erent sessions if it is long. The question is then to�nd an appropriate threshold for distinguishing between these two 
ases. Inorder to give an answer to this question, we studied the inter-query timedistribution, presented in Figure 1 (we display both the distribution (a) andthe 
omplementary 
umulative distribution (b)).We observe 
lear peaks at 60 se
onds and at multiples of it (120, 240,300, 900, . . . ) in the distribution (they 
an be more 
learly seen in the inset).These peaks indi
ate that, though users de
ide whi
h queries to make andwhen they make them, there is a strong in�uen
e of the proto
ol on theobserved data: most 
lient appli
ations automati
ally perform periodi
al6
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umulative dis-tribution.Figure 1: Inter-query time distribution, for the queries dataset.queries. Although these peaks be
ome smaller after 1800 s, a zoom on theplot (not presented here) shows that they are 
learly de�ned for values uptill at least 20 000 se
onds.In order to smooth out the plot, we 
onsider the 
omplementary 
umu-lative distribution (Figure 1 (b)). There is a high density of values between
1 000 and a value slightly smaller than 10 000 (the slope of the distributionis steep in this region). Su
h a high density indi
ates normal inter-querylengths within a session, and 
hoosing a threshold in this region or before itwould have little meaning. Therefore, we argue that the threshold must beat least as large as 10 000 se
onds.To study the importan
e of the peaks in the distribution, we 
omputed,for a same measurement window, the session length distributions obtainedwith two di�erent thresholds, the �rst 
hosen just before a peak and these
ond just after this same peak. We made a 
omparison between these twodistributions and we observed no signi�
ant di�eren
e.Finally, we have 
hosen to use a threshold of t = 10800 se
onds, i.e. 3hours. Therefore, in the following, if a same user sends 
onse
utive queriesseparated by less than three hours, these queries belong to a same session,otherwise they belong to di�erent sessions 2.2A detailed study of session lengths would probably bene�t from studying other valuesfor this threshold. However our goal here is to illustrate our methodology and show that we
an obtain interesting insights on the 
hara
teristi
s of session lengths. Other thresholdslead to similar results to this respe
t.

7



3.2. Chara
terization of session lengthsWe now apply our methodology to the study of the session length distri-butions, by studying Sk(W0,l) for di�erent values of l.We �rst observe that these distributions are highly irregular. They present
lear peaks and valleys, whi
h are linked to the peaks in the inter-sessiontime distribution, see Figure 1 (a). Similar observations hold for di�erentobservation window lengths and positions. We will therefore 
onsider 
om-plementary 
umulative distributions, to smooth out the irregularities.
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(b) l = 1 and 2 weeks (the two distri-butions overlap almost 
ompletely).Figure 2: Complementary 
umulative distributions of Sk(W0,l) for di�erent obser-vation window lengths l, for the queries dataset.Figure 2 presents the 
omplementary 
umulative distribution Sk(W0,l)for di�erent values of l, up to l = 2 weeks. The fra
tions of sessions withlength 0 are not the same, whi
h 
auses the normalized distributions to beverti
ally shifted 3. The shapes of these distributions are however similar,with a small fra
tion of sessions with length smaller than 2 000 s, and anapproximately linear shape between 2 000 s and 100 000 s. However, when
l ≤ 1 day, the distributions exhibit a 
lear 
ut-o�. This is not the 
aseanymore for l ≥ 4 days: the tail of the distribution �attens after a bendo

urring 
lose to 100 000 s (∼ 28 hours), and we observe a small fra
tionof extreme values after this bend. For observation windows larger than fourdays, the shape of the distribution does not seem to evolve anymore: Figure 2(b) shows that the distributions for l = 1 week and l = 2 weeks are verysimilar to ea
h other and to the one obtained for l = 4 days.However, when l in
reases again, we observe a small di�eren
e betweenthe 
orresponding distributions. Figure 3 (a) shows Sk(W0,l) for l = 1 week3Sin
e the x-axis is in log-s
ale, the point (0, 1) whi
h belongs to all these distributionsdoes not appear. 8
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(b) Distribution normalized by num-ber of values larger than 0.Figure 3: Complementary 
umulative distributions of Sk(W0,l) for observationwindow lengths l = 1 week and l = 10 weeks, for the queries dataset.and l = 10 weeks. We observe a small gap between them, 
aused by thefra
tion of sessions of length 0 (whi
h again does not appear be
ause ofthe log-s
ale on the x-axis): when the distribution is normalized by thenumber of sessions with length stri
tly larger than 0 (Figure 3 (b)), this gapdisappears. This shows that, though the shape of the distribution does notvary anymore, the fra
tion of sessions with length 0 does.When 
onsidering windows Wt1,l and Wt2,l of the same length but withdi�erent starting points, we observe that in general S0(Wt1,l) 6= S0(Wt2,l).As above, this di�eren
e is due to the fra
tion of sessions with length 0 whi
hdi�ers between these two distributions. This shows that the fra
tion S0(Wt,l)of sessions with length 0 depends both on t and l, but that the general shapeof the distribution, when this fra
tion is not taken into a

ount, does not
hange.
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Figure 4: Complementary 
umula-tive distributions of Sk(W0,l) for ob-servation window lengths l = 1 weekand l = 2 weeks in lin-log s
ale, forthe queries dataset.

We saw that the distributions seemvisually not to 
hange on
e the obser-vation window length has rea
hed fourdays. However, one must be 
arefulwhen driving 
on
lusions from a visualexamination. Indeed, Figure 4 showsthe distributions for l = 1 week and
l = 2weeks, but with a linear s
ale onthe x-axis and a logarithmi
 s
ale onthe y-axis. At �rst glan
e, the distribu-tions seem strongly di�erent from ea
hother. However, a more 
areful exami-nation shows that the distributions aresimilar for at least 99% of the values.They are di�erent only for values larger than approximately 150 000 s, whi
h9



are values seen after the bend of Figure 2 (b), and are signi�
antly rarer thanvalues below this bend. This leads us to 
onsider them as extreme values.The fa
t that the extreme values 
hange when l in
reases shows that they
annot be 
hara
terized with our methodology, and we leave their study forfurther work.
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tion of l.Figure 5: Study of the evolution of Sk with the K-S test and the M-K distan
e,for the queries dataset.We now study the evolution of the distributions with the K-S test and M-K distan
e. Figure 5 (a) presents KS(Sk(W0,l), Sk(W0,lmax

)) as a fun
tion of
l. The �rst values are high, and de
rease qui
kly to approximately 4% for anobservation window 
orresponding to l = 24 hours. After this, the de
reaseis linear. This 
learly shows that observation windows of less than 24 hoursare not representative. However, we do not know if the value 4% is smallenough to 
onsider that the distributions are similar or not. Moreover, thelinear shape does not 
orrespond to a value whi
h �u
tuates before be
omingstable. This plot does therefore not allow us to de
ide when the observationwindow be
omes long enough, or even to know if this happens during themeasurement. Therefore, we 
annot rea
h a 
on
lusion with the K-S test.We present the 
omparison with the M-K distan
e in Figure 5 (b): we
ompute MK(S(W0,l), S(W0,lmax

)) as a fun
tion of l. We observe a di�erentbehavior: the values observed tend to de
rease (with �u
tuations), until theobservation window rea
hes approximately 150 hours (6 days and 6 hours).After this, the value of the M-K distan
e be
omes very small: this showsthat the 
orresponding distributions are very 
lose to ea
h other.Finally, Figure 6 presents the standard deviation and the mean of Sk(W0,l)as a fun
tion of l. We 
an see that the mean be
omes stable on
e l rea
hesapproximately 1 week, at the same time as the M-K distan
e. This 
on-�rms that an observation window of one week is long enough to a

urately10



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0  200  400  600  800  1000  1200  1400  1600  1800

Observation window in hours

Mean
Standard deviation

Figure 6: Mean and standard deviation of Sk(W0,l), as a fun
tion of l, for thequeries dataset.estimate the distribution. The standard deviation, however, does not seemto stabilize as the observation window length in
reases 4, 
on�rming thatthe distribution 
annot be fully 
hara
terized. This is 
onsistent with thedistin
tion between the normal part of the distribution and extreme values.Indeed, the extreme values are very large and therefore have a strong im-pa
t on the standard deviation. The fa
t that they 
annot be 
hara
terized
auses the standard deviation to vary, whereas the fa
t that the normal partof the distribution is 
hara
terized 
auses the mean to be
ome stable.This 
on�rms the intuition obtained by the visual study of the distri-butions: on
e the observation window length rea
hes one week, the normalpart of the session length distribution stops evolving. This means two things.First, this distribution is stationary over time s
ales of the order of the wholemeasurement length, and it therefore makes sense to 
hara
terize it. Se
ond,an observation window of one week is long enough to a

urately estimate it.The extreme values of this distribution 
annot however be 
hara
terized byour methodology.4. Users' session lengths � logins datasetWe now study the session length distributions Sk, in the logins dataset.Figure 7 shows the 
omplementary 
umulative distribution Sk(W0,l) fordi�erent values of l, up to l = 27 days. We 
an see that the shape ofthese distributions are similar, and get 
loser to ea
h other as l in
reases: inFigure 7 (a), we observe that the distribution 
orresponding to l = 6 hours4Noti
e that, if we had stopped the measurement at 1200 hours, we would have had theimpression that it stabilizes, hen
e the importan
e to have an observation window longenough. 11
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(b) l = 4 days to 27 daysFigure 7: Complementary 
umulative distributions of Sk(W0,l) for di�erent obser-vation window lengths l, for the logins dataset.is a little di�erent from the other distributions. For l = 1 day to l = 4 days,the distributions are 
loser to ea
h other. When we in
rease l to 7 and 27days (see Figure 7 (b)), the distributions remain 
lose, but we observe alsothat the distribution 
orresponding to l = 4 days is 
loser to the distribution
orresponding to l = 27 days than the one 
orresponding to l = 7 days.In order to get a better intuition, we 
ompare these distributions with theK-S test and M-K distan
e. Figure 8 (a) presents KS(Sk(W0,l), Sk(W0,lmax
))as a fun
tion of l. We 
an see that the values are high at the beginning,and de
rease qui
kly to approximately 2% for an observation window 
orre-sponding to l = 4 days. After this, the values in
rease slightly until l = 7days, whi
h is 
onsistent with our observations from Figure 7 (b). After

l = 200 hours, the values tend to de
rease almost linearly.
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Observation window (hours)(b) MK(Sk(W0,l), Sk(W0,lmax
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tion of l.Figure 8: Study of the evolution of Sk(W0,l) with the K-S test and the M-Kdistan
e, for the logins dataset.When we 
ompare the same distributions using the M-K distan
e (Fig-ure 8 (b)), we do not observe the same phenomena. The values obtained tendto de
rease linearly whi
h means that the distributions 
hange at a more or12



less 
onstant rate. This shows that, though they are visually 
lose and havea relatively small K-S test, the distributions 
orresponding to l = 4 daysand l = 27 days are not this 
lose to ea
h other. Indeed, a more detailedexamination of the distributions showed that the distan
e between them isnot very large, but is present for a wide range for x values. The distan
ebetween the distributions 
orresponding to l = 7 days and l = 27 days isonly large for small x values.
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Figure 9: Mean and standard deviation of Sk(W0,l), as a fun
tion of l, for thelogins dataset.Finally, we also 
ompute the mean and the standard deviation of Sk(W0,l)as a fun
tion of l, whi
h we present in Figure 9. We observe that both of themin
rease linearly with the observation window length, whi
h is 
onsistent withthe observations made with the M-K distan
e.We have seen that the distributions Sk(W0,l) are visually 
lose to ea
hother as soon as l is not too small. However, the numeri
al analysis showsthat they evolve more or less linearly with l. Therefore, we 
annot fully
hara
terize this property be
ause a longer or shorter measurement wouldexhibit a slightly di�erent distribution. We however have 
on�den
e thatthe global shape of the distribution is the one we observed.5. Files' life durationWe now study the �les' life duration distribution, whi
h we denote by
Fk. Informations about �les are only available in the queries dataset . In thisse
tion and the rest of this paper, we only 
onsider the �les for whi
h thereis at least one provider, be
ause many �les in the dataset are queried for butare never provided. These are �les whi
h don't exist in the system, at leastduring the measurement, and we therefore do not take them into a

ount.There are two possible ways to de�ne a �le's life duration. The �rst oneis the same as for users' sessions lengths: 
onsidering that a �le is not present13



in the system if there is no 
onse
utive queries for this �le distant from ea
hother by less than a given threshold. In the se
ond 
ase, the life durationof a given �le is de�ned by the time interval between the �rst and the lastquery for this �le. Considering a threshold is not ne
essarily relevant here:we expe
t �les to be more stable in the system than users, and the fa
t thata �le is not queried for a (short) amount of time does not ne
essarily meanthat it is not present in the system anymore.We studied both de�nitions. In both 
ases this property does not stabilize.We present here the results obtained for the se
ond de�nition, be
ause theylead to interesting insight.
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10 weeks(b) l = 1, 2, 5 and l = 10 weeks.Figure 10: Complementary 
umulative distributions of Fk(W0,l) for di�erent ob-servation window lengths l.Figure 10 (a) presents the 
omplementary 
umulative distribution Fk(W0,l)for di�erent values of l, from l = 1 hour to l = 4 days. We 
an see that theshape of the di�erent distributions evolves strongly with l. This is also the
ase if we in
rease l and study the distributions 
orresponding to l = 1, 2, 5and l = 10 weeks (Figure 10 (b)).We observe that, the larger the observation window is, the larger thevalues of �les' life durations tend to be: this 
an be explained by the fa
tthat some �les exist in the system for very long periods of time, so theirobserved life duration in
reases with the observation window length.In order to 
on�rm these observations more formally, we 
ompare thedistributions with the K-S test and M-K distan
e. Figure 11 (a) presentsKS(Fk(W0,l), Fk(W0,lmax
)) as a fun
tion of l. We 
an see that the valuesobtained are very high and vary mu
h when l in
reases: for a measurementduration 
orresponding to l = 1344 hours (8 weeks), the K-S test valueis still greater than 60%. We also 
ompare the same distributions usingthe M-K distan
e and study MK(Fk(W0,l), Fk(W0,lmax

)) as a fun
tion of l14
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Observation window (hours)(b) MK(Fk(W0,l), Fk(W0,lmax
)) as afun
tion of l.Figure 11: Study of the evolution of Fk(W0,l) with the K-S test and the M-Kdistan
e.(Figure 11 (b)). It shows the same behavior as the K-S test: the values ob-served tend to de
rease linearly and are very large.
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Figure 12: Mean and standard devi-ation of Fk(W0,l), as a fun
tion of l.
We present in Figure 12 the meanand standard deviation of the distribu-tions Fk(W0,l), as a fun
tion of l. We
an see that they both evolve 
ontinu-ously as the observation window lengthin
reases. These observations are 
on-sistent with Figure 10 and show that,the longer the observation window is,the larger the �les' life durations are.We 
an investigate whether the distributions do evolve linearly with theobservation window length l by normalizing them with respe
t to l. In orderto do so, we divide the values of the x axis of the distribution Fk(W0,l) bythe observation window length l. To obtain normalized distributions, we alsomultiply the values of the y axis by l.We present the 
orresponding normalized distributions in Figure 13 (a),for l = 1, 5 and 10 weeks. To better understand these plots, we also presentthe regular distributions (i.e., not normalized) in Figure 13 (b). We observeseveral things.First, the normalized distributions all present peaks at the maximal pos-sible values (604, 800s = 1 week, whi
h is the normalization unit for thisplot). This 
orrespond to the fa
t that a relatively large fra
tion of �les havea life duration equal to the observation window length, as 
an be observedin Figure 13 (b). 15



Se
ond, the normalized distributions present some intermediary peaks,whi
h are not at the same x-values for the di�erent distributions. This is
aused by the fa
t that the regular distributions (Figure 13, b) present peakswhi
h 
oin
ide. We observed a similar phenomena for users' session lengthsin Se
tion 3. This is 
aused by the fa
t that some 
lients send periodi
alqueries, see Figure 1 (a). When the distributions are normalized, these peaksshift a

ordingly and the distributions do not 
oin
ide.
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(b) Regular Distributions.Figure 13: Distributions of Fk(W0,l) for observation window lengths l = 1, 5 and
10 weeks.
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Figure 14: Mean and standard de-viation (for distributions normalizedwith respe
t to l) of Fk(W0,l), as afun
tion of l.

Sin
e the K-S test and M-K distan
e
an be 
omputed only on 
umulativedistributions, it is not possible to 
om-pute them for the distributions shownin Figure 13 (there is no natural wayto 
ompute the 
umulative of a distri-bution normalized in this way). Wetherefore just study the mean and stan-dard deviation of the normalized distri-butions, whi
h we present in Figure 14.We observe that, after some initial �u
-tuations, they both stabilize (note thatthe standard deviation stabilizes morequi
kly than the mean). It is interest-ing to note that the fa
t that the mean and standard deviation stabilize doesnot mean that the 
orresponding distributions also stabilize.Finally, this property 
annot be 
hara
terized in our measurements. The(regular, un-normalized) distributions evolve 
ontinuously with the length ofthe observation window. Normalizing the distributions by the length of the16



observation window shows that this evolution is not regular, even though itis possible to 
hara
terize their mean and standard deviation. It remainsan open question whether this property 
ould be 
hara
terized if measure-ments longer than 10 weeks were performed, or whether it is intrinsi
ally notstationary.6. Number of queries per �leWe now study the distribution of the number of queries per �le Qk, inthe queries dataset .
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000  10000  100000F
ra

ct
io

n 
of

 fi
le

s 
w

ith
 n

um
be

r 
of

 q
ue

rie
s 

>
 x

Number of queries

1 hour
12 hours

1 day
4 days

(a) l = 1 h, 12 h, 1 day and 4 days.  0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000  10000  100000  1e+06  1e+07F
ra

ct
io

n 
of

 fi
le

s 
w

ith
 n

um
be

r 
of

 q
ue

rie
s 

>
 x

Number of queries

1 week
5 weeks

10 weeks

(b) l = 1, 5 and l = 10 weeks.Figure 15: Complementary 
umulative distributions of Qk(W0,l) for di�erent ob-servation window lengths l.Figure 15 presents the 
omplementary 
umulative distribution Qk(W0,l)for di�erent values of l, from l = 1 hour to l = 10 weeks. We 
an see that thedi�erent distributions have some 
ommon properties: globally, we observe alinear shape at the beginning of ea
h distribution whi
h shows that there is alarge fra
tion of �les with a small number of queries (this fra
tion de
reasesas l in
reases). The tail of these distributions, however, tends to �attenwhi
h means that there is a small fra
tion of �les with a very large numberof queries. We observe also that the distributions evolve signi�
antly with l:the number of queries per �le in
reases with the observation window length.We 
on�rm that this property doesn't stabilize with the K-S test and M-Kdistan
e. Figure 16 (a) presents KS(Qk(W0,l), Qk(W0,lmax
)) as a fun
tion of

l. First, we 
an see that the values are very large: the values start almostat 80% for an observation window 
orresponding to l = 12 hours, to rea
haround 35% for l = 1 week. After this, the values tend to de
rease linearly.The M-K distan
e follows almost the same behavior (Figure 16 (b)), ex
eptthat the values tend to de
rease more linearly. These observations are quite
onsistent with the ones obtained from Figure 15.17
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Observation window (hours)(b) MK(Qk(W0,l), Qk(W0,lmax
)) as afun
tion of l.Figure 16: Study of the evolution of Qk(W0,l) with the K-S test and the M-Kdistan
e.In Figure 17, we present the mean and the standard deviation of Qk(W0,l)as a fun
tion of l. We 
an see 
learly that the values obtained for both, asexpe
ted, tend to in
rease linearly with the observation window length.
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Figure 17: Mean and standard deviation of Qk(W0,l), as a fun
tion of l.As seen before (for the �le's life durations, see Se
tion 5), the distribu-tions seem to evolve linearly with the observation window length. In orderto investigate this, we study the distributions normalized with respe
t to theobservation window length. We perform this normalization in the same wayas in the previous se
tion, i.e. we divide the x values by l, and multiplythe y values by l. The obtained distributions are shown in Figure 18. We
an observe that the these distributions 
oin
ide, whi
h means that they doevolve linearly with the observation window length.This is 
on�rmed by the mean and the standard deviation for the nor-malized distributions presented in Figure 19. We observe that the valuesobtained for the mean and the standard deviation follow the same behavior:at the beginning, they tend to de
rease qui
kly, then stabilize on
e l rea
hesapproximately 1 week. Note that the standard deviation de
reases slightlywith l, whi
h seems to indi
ate that the proportion of very large values (af-18
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(b) l = 1 week, 5 weeks and 10 weeks.Figure 18: Distributions of Qk(W0,l) for di�erent observation window lengths l,normalized with respe
t to the time duration.ter the bend of Figure 15) tends to de
rease. It remains an open questionto see whether it would be
ome 
ompletely stable with longer observationwindows.
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Figure 19: Mean and standard deviation (for distributions normalized with respe
tto the time duration) of Qk(W0,l), as a fun
tion of l.Finally, we 
an 
on
lude that the distributions of the number of queriesper �le evolve when the observation window length l in
reases. However,the study of these distributions normalized by l shows that this evolution islinear, whi
h means that we are able to 
hara
terize this property.7. Number of queries per sessionWe now study the distribution of the number of queries by session Gk,in the queries dataset. We 
onsider the same de�nition of sessions as in Se
-tion 3.1, and study the number of queries the 
orresponding user performedwithin ea
h session.Figure 20 presents the 
omplementary 
umulative distribution Gk(W0,l)for di�erent values of l, from l = 1 hour to l = 10 weeks.19
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(b) log-log s
ale.Figure 20: Complementary 
umulative distributions of Gk(W0,l) for di�erent ob-servation windows lengths l.In Figure 20 (a), we present these distributions in logarithmi
 s
ale onthe x-axis and a linear s
ale on the y-axis. We 
an see that the shapesof the distributions are very similar, with a large fra
tion of sessions witha small number of queries and a small fra
tion of sessions with more than
1 000 queries. We observe that for an observation window larger than 1 day,the distributions overlap almost 
ompletely and do not seem to evolve when
l in
reases.When we 
ompare the same distributions but with a logarithmi
 s
ale onboth axis (Figure 20 (b)), we observe that they seem visually more di�erent.However, we 
an observe that the distributions 
orresponding to l = 1, 3 and
10 weeks, are similar for more than 99% of the values. They are di�erentonly values larger than 1 000, whi
h are after the bend of Figure 20 (a).
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)) as afun
tion of l.Figure 21: Study of the evolution of Gk(W0,l) with the K-S test and the M-Kdistan
e.Figure 21 presents KS(Gk(W0,l), Gk(W0,lmax

)) and MK(Gk(W0,l), Gk(W0,lmax
))as a fun
tion of l. We 
an observe that they both follow the same behavior:the �rst values are high, and de
rease qui
kly until l = 24 hours. After this,20



they de
rease slightly and tend to stabilize after l = 1 week. This shows thatthe 
orresponding distributions are very 
lose to ea
h other whi
h is quite
onsistent with our observations from Figure 20.
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Figure 22: Mean and standard deviation of G(W0,l), as a fun
tion of l.In Figure 22, we present the mean and the standard deviation of Gk(W0,l)as a fun
tion of l. We observe that the values of the mean de
rease slightly atthe beginning and be
ome stable on
e l rea
hes 1 week, at the same time asthe K-S test and the M-K distan
e. This shows that an observation windowof one week is long enough to 
hara
terize the shape of this property. Thestandard deviation, however, does not seem to stabilize as the observationwindow length in
reases. This 
an be explained by the presen
e of very largevalues (larger than 1 000), whi
h we have seen in Figure 20.Finally, we 
an observe that this property has a very similar behaviorwith the �rst property we have studied (users' session length, Se
tion 3).We distinguish two parts in the distribution: the �rst one 
orresponds to thelarge fra
tion of sessions with less than 1 000 queries, whi
h we are able to
hara
terize. The se
ond one 
orresponds to the small fra
tion of extremevalues whi
h are not 
hara
terized by our methodology.8. Related WorkThe fa
t that the observation window length impa
ts the observed prop-erties of a dynami
 system has mainly been a
knowledged for 
hurn, i.e. thedynami
ity of users, in P2P systems [2, 11, 12, 16, 13, 14℄.Willinger et al. [17℄ addressed, in the 
ontext of IP �ows, the question ofwhether the observation window is long enough to 
hara
terize some dynami
properties. They study the standard deviation of the �ow size distributionas a fun
tion of the measurement length, and argue that the fa
t that itdoes not 
onverge means that the samples may 
ome from an underlying21



distribution with in�nite varian
e. This in turn may make it di�
ult to �tthe observed properties with a model.The 
reate-based method [11, 12℄ is based on the observation that beingable to only 
apture a

urately the length of sessions that begin and endwithin the measurement window 
reates a bias towards short sessions. Toremove this bias, the measurement window of length T is divided into twohalves, and only the sessions that begin during the �rst half and last lessthan T/2 are 
onsidered. This leads to an unbiased estimation of sessionswith length less than T/2.This methodology is 
omplementary to the one we introdu
e here, whi
hdoes not formally remove the bias, but allows to make observations for theshape of the distribution even for values larger than T/2. Moreover, ourobservations show that if the measurement window is too short, the 
reate-based method will in some 
ases fail to provide an unbiased estimation.Finally, this method only applies to properties for whi
h a notion of session
an be de�ned, whi
h is not always the 
ase. For instan
e, it 
annot be ap-plied to the study of the number of queries for ea
h �le, whi
h we performedin Se
tion 6.Finally, the bias 
aused by the �niteness of the observation window isnot the only one o

urring in our 
ontext. Stutzba
h and Rejaie [13℄ studieddi�erent aspe
ts of peer dynami
s in three di�erent 
lasses of P2P systems(Gnutella, Kad and BitTorrent). They 
arefully analyzed the di�erent kindsof bias that may in�uen
e su
h a study, and presented a list of those theyidenti�ed, whi
h in
ludes problems linked to a

urate peer identi�
ation.Wang et al. [16℄ argue that the 
reate-based method is biased when thedata is obtained through periodi
 sampling, be
ause short events may bemissed or in
orre
tly observed. They propose a new sampling algorithm
alled RIDE (ResIDual-based Estimator) whi
h measures session length dis-tributions with high a

ura
y and requires a low sampling frequen
y.Stutzba
h et al. [14℄ investigate the issues arising when the whole systemis not known, and informations about the nodes and links are obtained by asampling pro
edure (in this 
ase, random walk-based methods), in the 
asewhere the system evolves while the sampling pro
ess is under progress.Friggeri et al. [4℄ studied 
onta
t networks 
aptured with sensors ableto dete
t when they are 
lose to ea
h other. They studied the bias on theobserved 
onta
t duration 
aused by the fa
t that some sensors may fail todete
t ea
h other at some times.
22



9. Con
lusion and Future WorkIn this paper we introdu
ed an empiri
al methodology for de
iding whenthe bias indu
ed by the �niteness of the observation window in dynami
systems be
omes negligible. We illustrated its relevan
e by applying it tothe study of several properties in a large P2P system.This brought several key 
on
lusions:
• if a system is observed for a period of time that is too short, it is notpossible to obtain an a

urate evaluation of its properties, whi
h showsthe relevan
e of our methodology;
• in a same system, it is possible to 
hara
terize some properties, butnot others. This is the 
ase for instan
e in the queries dataset , inwhi
h it is possible to 
hara
terize a

urately the session length dis-tribution, but not the �le life duration distribution. This shows thatthere is no absolute relevant time s
ale to study a system, but thatea
h property must be studied independently. This is 
on�rmed bythe fa
t that, for the properties that we were able to 
hara
terize, theminimum observation window length required is not exa
tly the same.Our methodology does not allow us to de
ide whether the propertiesthat we were not able to 
hara
terize are not stationary, or if longermeasurements would be required to 
hara
terize them;
• the degree to whi
h we are able to 
hara
terize the system's propertiesvaries: in some 
ases we are able to 
hara
terize the whole distribution,in others we 
an 
hara
terize the distribution ex
ept some extremevalues, and in others we know the global shape of the distribution, but
annot trust its exa
t numeri
al properties. Knowing to whi
h extentone 
an trust in a given property is a very valuable insight for the studyof any system.Finally, one key advantage of our methodology is that it 
an be appliedto any property in any dynami
 system, and allows to know whi
h observedproperties 
an be trusted and whi
h 
annot.An interesting dire
tion for extending this work would be to study modelsfor the di�erent properties we studied. This would allow us to gain a betterintuition on the studied phenomena, and 
on�rm formally our results. Itmay also provide formal bounds for the minimum observation window lengthneeded to 
hara
terize a given property with a given a

ura
y.Finally, we presented here a methodology for dealing with the bias in-trodu
ed when measuring the dynami
s of a system. In many systems, and23



in parti
ular in the 
ase of the internet, it is known that the measurementpro
edure may introdu
e a stru
tural bias even if the system does not evolvewith time. Some methods have been introdu
ed to remedy this, see forinstan
e [7, 6, 14℄. We believe it is therefore 
ru
ial to 
ombine methodolo-gies su
h as the one we introdu
ed here, whi
h deal with the dynami
 bias,to methodologies dealing with the stru
tural bias, in order to 
apture theproperties of systems su
h as the internet, as well as their dynami
s.A
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