
Removing bias due to �nite measurement of dynaminetworksLamia Benamaraa, Clémene MagnienaaUPMC Univ Paris 06, UMR 7606, LIP6, F-75252, Paris, FraneCNRS, UMR 7606, LIP6, F-75252, Paris, FraneEmail: �rstname.surname�lip6.frAbstratCharaterizing aurately the dynamis of evolving networks (suh asP2P systems, the internet topology, . . . ) is a di�ult task, beause severalfators an introdue a bias in the observed properties. In partiular, thefat that we an observe a given system only for a �nite duration intro-dues a bias, beause events ourring before or after the observation aremissed. Although this bias tends to derease when the observation windowlength inreases, it is di�ult to quantify its importane, or know how fastit dereases.Here, we introdue a general methodology that allows to know if theobservation window is long enough to haraterize a given property.We apply this methodology to the study of several properties in a largeP2P system, using two di�erent and omplementary datasets. We show thatan observation window that is too short does indeed indue a bias, and thatour methodology allows to detet this. We also show that there is no overallsatisfying duration for observing a given system. While some properties anbe haraterized with a given observation window length, others annot beharaterized at all in our datasets, either beause the measurement was notlong enough, or beause the property is intrinsially not stationary. In eitherase, these properties annot be trusted.Keywords:Dynamis, metrology, bias, measurement, P2P.1. Introdution.Many systems are naturally dynami. For instane in the internet, routers,as and/or links between them are reated or deleted [9, 10℄; in P2P networks,Preprint submitted to Computer Networks April 7, 2011



users join or leave the system [13, 12, 8℄, and exhange di�erent �les at dif-ferent times; in online soial networks users may reate or delete aounts,or ease to be ative, and reate or delete onnetions with other users [15℄.In all these ases, understanding the dynamis of the system is a keyissue. However, aurately measuring this dynamis is a di�ult task. Inpartiular, the fat that the observation window is neessarily �nite induesa bias in the observations [11, 13, 12℄. Though this bias tends to dereasewhen the observation window length inreases, it is di�ult to quantify it inpratie, and know whether it is negligible or not.Another problem is that a small observation window may not be rep-resentative of the whole behavior of the system. For instane, measuringthe ativity in a P2P system during one hour is not enough to apture fullythe dynamis of user usages, beause of day/night ativity variations for in-stane. However, it is not a priori lear whether one day, or two, or oneweek, is long enough.In this paper, we introdue a new methodology that allows to rigorouslyharaterize dynami metris in real-world dynami systems. This method-ology is di�erent and omplementary to other methodologies existing in theliterature [13, 12℄, and has two main advantages:
• it allows to determine if the observation window length was su�ientfor a rigorous haraterization;
• it an be applied to any property haraterizing the dynamis of asystem.To illustrate the relevane of this methodology, we apply it to the study ofseveral properties in the eDonkey P2P system. We use two di�erent datasetswhih provide omplementary information.This doument is organized as follows. In Setion 2, we introdue ourmethodology and present the datasets we use. In Setion 3 to 7 we applyour methodology to the study of several properties desribing the system.We present related work in Setion 8, and our onlusions and future workin Setion 9.2. Methodology and Data2.1. MethodologySuppose we start observing a dynami graph at a time t, for a duration l.We denote by Wt,l this observation window. We are faed with two problems2



if we want to haraterize the graph's dynamis from the observation of Wt,l.First, l must be long enough for Wt,l to be representative. For instane, itseems hopeless to haraterize rigorously the ativity in a P2P system afterobserving it for a single hour: at the very least, this does not allow to observethe ativity variation aording to the time of the day. Seond, even if it isrepresentative, the fat that l is �nite still indues a bias in the observations.Events ourring before t or after t+ l are not observed, whih prevents fromharaterizing aurately some quantities (for instane, session lengths, ortime orrelations between di�erent events). An important point to observeis that the longer the measurement period, the smaller the bias indued.Our methodology addresses these two issues at the same time. Intu-itively, it aims at deiding if the measurement period Wt,l is long enough toharaterize a given property P , i.e. if the bias indued by its �niteness onthe observed property is negligible. If the window Wt,l is long enough, thenif we use a longer window of length l + x, the observed property does nothange: P (Wt,l) = P (Wt,l+x).In order to deide when a window is long enough, we use windows ofinreasing length Wt,l1 ,Wt,l2 , ..., Wt,ln (l1 < l2 < ... < ln). By studying howthe observed property P (Wt,l1),P (Wt,l2), ...P (Wt,ln) evolves as a funtion of
l, we determine if it is orretly evaluated or not: if it �utuates or variesgreatly as l inreases, then P is ertainly not aurately evaluated. Indeed,a shorter or longer observation window would have yielded a di�erent value.Instead, if P tends to beome stable as the window length l inreases, thenit is probably aurate.Finally, an important point is that haraterizing a property P onlymakes sense if it is stationary, i.e. if P does not evolve while the mea-surement is under progress. Notie however that if it is not stationary, ourmethodology will not be able to provide a haraterization: the observedproperty P will not beome stable when the observation window length l in-reases. If it does beome stable, this means both that Wt,l is long enough,and that P is stationary 1.Notie that, depending on the property studied, other types of bias anour, see for instane [13℄. In our ontext, some ome from the identi�ationof users and their sessions. We do our best to deal with them in a rigorousway, as we detail in the following setions. However, we stress on the point1Note that the system may be stationary with respet to a given property P and notanother one P ′; in suh a ase our methodology will provide a haraterization for P andnot for P ′. 3



that our goal here is not to address all kinds of biases at the same time, butto exhibit the role played by the observation window length.Here, most of the properties we study are distributions. In general wewill denote a distribution with a subsript k to indiate that it is a funtionof k, e.g. Pk. To study how an observed distribution Pk evolves with thelength of the observation window, we will �rst plot the observed distributions
Pk(Wt,l) for di�erent values of l. We note that we take t as the beginning ofour measurement period, therefore we set t = 0 in the following.In order to on�rm more formally the visual observations, we will alsostudy two statistial indiators whih quantify how lose two distributions
Pk and Qk are to eah other. The Kolmogorov-Smirnov test, or K-S test [3℄ompares two normalized umulative (omplementary or not) distributions
Pk and Qk. It is equal to the maximum, for all values k, of the distanebetween the two umulative distributions: KS(Pk, Qk) = maxk |Pk −Qk|. Itis always lower than 1, and the loser it is to 0, the more similar the twodistributions are.An important question raised by the K-S test is to know if the distribu-tions di�er by the resulting value at all points, or just at one point. In orderto help us answering this question, we study theMonge-Kantorovih distane,or M-K distane [5℄ whih is equal to the mean of the distane between thetwo (umulative) distributions: MK(Pk, Qk) = (

∑
k |Pk − Qk|)/kmax. Twodistributions that only di�er in a single point will therefore have a high K-Stest, but a small M-K distane. We use these indiators to study how theobserved distribution P (W0,l) evolves: we ompute the K-S test (respe-tively the M-K distane) between P (W0,l) and P (W0,lmax

), where lmax is thelength of the longest observation window available for this dataset, and plotthis as a funtion of l. Following [17℄, we also study the mean and standarddeviation of Pk(W0,l) as a funtion of l.2.2. DataWe use two datasets: the �rst onsists in the apture of the udp tra�of a large eDonkey server [1℄. It onsists of the queries made by users (forlists of �les mathing ertain keywords, or for providers for a given �le), andof the server's answers to these queries. There are two types of queries. The�rst one are of the following form:
T IP L,where T is the time at whih this query was made, IP is the (anonymized) IPaddress of the user making this query, and L is a list of keywords desribing4



the wanted �le. The servers's answer is of the following form:
T IP (F1, S1) (F2, S2) ... (Fn, Sn),where IP is the IP address of the user reeiving this answer and (F1, S1)

(F2, S2) ...(Fn, Sn) is a list of �le identi�ers mathing the keywords, togetherwith one provider for eah �le.The seond type of queries is of the following form:
T IP F1 F2 ... Fn,where F1 F2 ... Fn is a list of �le identi�ers the user wants to download. Theserver's answers to these queries have the following form:

T IP (F1, S11...S1n1
) (F2, S21...S2n2

) ... (Fn, Sn1...Snnn
),where Sk1...Sknk

is a list of providers for �le Fk.The measurement lasted for 10 weeks, whih represents 1 billion mes-sages, with 89 million peers and 275 million �les involved.The seond dataset onsists in a apture of the logins and logouts ofpeers on an eDonkey server [8℄. The login and logout information gives usthe preise session length of users. A small number of session however presentsome problems:
• some sessions do not end in our dataset, most probably beause themeasurement stopped before the user disonneted;
• some sessions of a same user are nested within one another, for instanewe observe two onseutive logins followed by two onseutive logouts.It is not possible in this ase to know whih logout orresponds towhih login, and therefore we do not know the session length.We disarded these two types of sessions in our analysis (they representapproximately 2% of all sessions). This dataset ontains more than 200millions of onnetions by more than 14 millions of peers, over a period of

27 days.The two datasets are omplementary: the �rst one does not give onne-tion and disonnetion times of users, and the seond one does not ontaininformation about queries. In the following, we will all the �rst dataset thequeries dataset and the seond one the logins dataset .5



3. Users' session lengths � queries datasetHere, we study the property Sk orresponding to the session length dis-tribution, in the queries dataset. Sine the session lengths are not diretlyavailable in this dataset (see Setion 2.2), we have to infer them from thestudy of the queries made by a user. We detail this below, before turning tothe atual study of the session length distribution.3.1. Identi�ation of users and sessionsIdentifying users in our data is a di�ult question. We only have aessto the ip addresses of the omputers from whih queries are entered. A om-puter is identi�ed by an ip address at a given time, but this may hange andwe are unable in general to detet that a same omputer has two di�erentaddresses (beause of dynami addresses for instane) and/or that two om-puters are using the same address (beause they are behind a same NAT forinstane). In addition, a same user may use several omputers, and severalusers may use the same omputer, making identi�ation of users even morehallenging. In the absene of a satisfying method for identifying users, thereare two natural solutions: the �rst one onsists in onsidering that a userorresponds to an ip address, and the other one onsists in onsidering thata user orresponds to an ip address, together with the udp port used.We use here the �rst one, whih allows to apture meaningful sessions (asexplained below) and is therefore relevant. Moreover, we performed the sameanalysis by using the seond de�nition, whih also ensures the reliability ofour results.We infer sessions for a given user by studying the time elapsed betweenonseutive queries.It is natural to onsider that two onseutive queries made by a sameuser belong to the same session if the time elapsed between them is short,and belong to two di�erent sessions if it is long. The question is then to�nd an appropriate threshold for distinguishing between these two ases. Inorder to give an answer to this question, we studied the inter-query timedistribution, presented in Figure 1 (we display both the distribution (a) andthe omplementary umulative distribution (b)).We observe lear peaks at 60 seonds and at multiples of it (120, 240,300, 900, . . . ) in the distribution (they an be more learly seen in the inset).These peaks indiate that, though users deide whih queries to make andwhen they make them, there is a strong in�uene of the protool on theobserved data: most lient appliations automatially perform periodial6
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inter query time in seconds(b) Complementary umulative dis-tribution.Figure 1: Inter-query time distribution, for the queries dataset.queries. Although these peaks beome smaller after 1800 s, a zoom on theplot (not presented here) shows that they are learly de�ned for values uptill at least 20 000 seonds.In order to smooth out the plot, we onsider the omplementary umu-lative distribution (Figure 1 (b)). There is a high density of values between
1 000 and a value slightly smaller than 10 000 (the slope of the distributionis steep in this region). Suh a high density indiates normal inter-querylengths within a session, and hoosing a threshold in this region or before itwould have little meaning. Therefore, we argue that the threshold must beat least as large as 10 000 seonds.To study the importane of the peaks in the distribution, we omputed,for a same measurement window, the session length distributions obtainedwith two di�erent thresholds, the �rst hosen just before a peak and theseond just after this same peak. We made a omparison between these twodistributions and we observed no signi�ant di�erene.Finally, we have hosen to use a threshold of t = 10800 seonds, i.e. 3hours. Therefore, in the following, if a same user sends onseutive queriesseparated by less than three hours, these queries belong to a same session,otherwise they belong to di�erent sessions 2.2A detailed study of session lengths would probably bene�t from studying other valuesfor this threshold. However our goal here is to illustrate our methodology and show that wean obtain interesting insights on the harateristis of session lengths. Other thresholdslead to similar results to this respet.
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3.2. Charaterization of session lengthsWe now apply our methodology to the study of the session length distri-butions, by studying Sk(W0,l) for di�erent values of l.We �rst observe that these distributions are highly irregular. They presentlear peaks and valleys, whih are linked to the peaks in the inter-sessiontime distribution, see Figure 1 (a). Similar observations hold for di�erentobservation window lengths and positions. We will therefore onsider om-plementary umulative distributions, to smooth out the irregularities.
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(b) l = 1 and 2 weeks (the two distri-butions overlap almost ompletely).Figure 2: Complementary umulative distributions of Sk(W0,l) for di�erent obser-vation window lengths l, for the queries dataset.Figure 2 presents the omplementary umulative distribution Sk(W0,l)for di�erent values of l, up to l = 2 weeks. The frations of sessions withlength 0 are not the same, whih auses the normalized distributions to bevertially shifted 3. The shapes of these distributions are however similar,with a small fration of sessions with length smaller than 2 000 s, and anapproximately linear shape between 2 000 s and 100 000 s. However, when
l ≤ 1 day, the distributions exhibit a lear ut-o�. This is not the aseanymore for l ≥ 4 days: the tail of the distribution �attens after a bendourring lose to 100 000 s (∼ 28 hours), and we observe a small frationof extreme values after this bend. For observation windows larger than fourdays, the shape of the distribution does not seem to evolve anymore: Figure 2(b) shows that the distributions for l = 1 week and l = 2 weeks are verysimilar to eah other and to the one obtained for l = 4 days.However, when l inreases again, we observe a small di�erene betweenthe orresponding distributions. Figure 3 (a) shows Sk(W0,l) for l = 1 week3Sine the x-axis is in log-sale, the point (0, 1) whih belongs to all these distributionsdoes not appear. 8
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(b) Distribution normalized by num-ber of values larger than 0.Figure 3: Complementary umulative distributions of Sk(W0,l) for observationwindow lengths l = 1 week and l = 10 weeks, for the queries dataset.and l = 10 weeks. We observe a small gap between them, aused by thefration of sessions of length 0 (whih again does not appear beause ofthe log-sale on the x-axis): when the distribution is normalized by thenumber of sessions with length stritly larger than 0 (Figure 3 (b)), this gapdisappears. This shows that, though the shape of the distribution does notvary anymore, the fration of sessions with length 0 does.When onsidering windows Wt1,l and Wt2,l of the same length but withdi�erent starting points, we observe that in general S0(Wt1,l) 6= S0(Wt2,l).As above, this di�erene is due to the fration of sessions with length 0 whihdi�ers between these two distributions. This shows that the fration S0(Wt,l)of sessions with length 0 depends both on t and l, but that the general shapeof the distribution, when this fration is not taken into aount, does nothange.
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Figure 4: Complementary umula-tive distributions of Sk(W0,l) for ob-servation window lengths l = 1 weekand l = 2 weeks in lin-log sale, forthe queries dataset.

We saw that the distributions seemvisually not to hange one the obser-vation window length has reahed fourdays. However, one must be arefulwhen driving onlusions from a visualexamination. Indeed, Figure 4 showsthe distributions for l = 1 week and
l = 2weeks, but with a linear sale onthe x-axis and a logarithmi sale onthe y-axis. At �rst glane, the distribu-tions seem strongly di�erent from eahother. However, a more areful exami-nation shows that the distributions aresimilar for at least 99% of the values.They are di�erent only for values larger than approximately 150 000 s, whih9



are values seen after the bend of Figure 2 (b), and are signi�antly rarer thanvalues below this bend. This leads us to onsider them as extreme values.The fat that the extreme values hange when l inreases shows that theyannot be haraterized with our methodology, and we leave their study forfurther work.
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Figure 6: Mean and standard deviation of Sk(W0,l), as a funtion of l, for thequeries dataset.estimate the distribution. The standard deviation, however, does not seemto stabilize as the observation window length inreases 4, on�rming thatthe distribution annot be fully haraterized. This is onsistent with thedistintion between the normal part of the distribution and extreme values.Indeed, the extreme values are very large and therefore have a strong im-pat on the standard deviation. The fat that they annot be haraterizedauses the standard deviation to vary, whereas the fat that the normal partof the distribution is haraterized auses the mean to beome stable.This on�rms the intuition obtained by the visual study of the distri-butions: one the observation window length reahes one week, the normalpart of the session length distribution stops evolving. This means two things.First, this distribution is stationary over time sales of the order of the wholemeasurement length, and it therefore makes sense to haraterize it. Seond,an observation window of one week is long enough to aurately estimate it.The extreme values of this distribution annot however be haraterized byour methodology.4. Users' session lengths � logins datasetWe now study the session length distributions Sk, in the logins dataset.Figure 7 shows the omplementary umulative distribution Sk(W0,l) fordi�erent values of l, up to l = 27 days. We an see that the shape ofthese distributions are similar, and get loser to eah other as l inreases: inFigure 7 (a), we observe that the distribution orresponding to l = 6 hours4Notie that, if we had stopped the measurement at 1200 hours, we would have had theimpression that it stabilizes, hene the importane to have an observation window longenough. 11
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(b) l = 4 days to 27 daysFigure 7: Complementary umulative distributions of Sk(W0,l) for di�erent obser-vation window lengths l, for the logins dataset.is a little di�erent from the other distributions. For l = 1 day to l = 4 days,the distributions are loser to eah other. When we inrease l to 7 and 27days (see Figure 7 (b)), the distributions remain lose, but we observe alsothat the distribution orresponding to l = 4 days is loser to the distributionorresponding to l = 27 days than the one orresponding to l = 7 days.In order to get a better intuition, we ompare these distributions with theK-S test and M-K distane. Figure 8 (a) presents KS(Sk(W0,l), Sk(W0,lmax
))as a funtion of l. We an see that the values are high at the beginning,and derease quikly to approximately 2% for an observation window orre-sponding to l = 4 days. After this, the values inrease slightly until l = 7days, whih is onsistent with our observations from Figure 7 (b). After

l = 200 hours, the values tend to derease almost linearly.
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less onstant rate. This shows that, though they are visually lose and havea relatively small K-S test, the distributions orresponding to l = 4 daysand l = 27 days are not this lose to eah other. Indeed, a more detailedexamination of the distributions showed that the distane between them isnot very large, but is present for a wide range for x values. The distanebetween the distributions orresponding to l = 7 days and l = 27 days isonly large for small x values.
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Figure 9: Mean and standard deviation of Sk(W0,l), as a funtion of l, for thelogins dataset.Finally, we also ompute the mean and the standard deviation of Sk(W0,l)as a funtion of l, whih we present in Figure 9. We observe that both of theminrease linearly with the observation window length, whih is onsistent withthe observations made with the M-K distane.We have seen that the distributions Sk(W0,l) are visually lose to eahother as soon as l is not too small. However, the numerial analysis showsthat they evolve more or less linearly with l. Therefore, we annot fullyharaterize this property beause a longer or shorter measurement wouldexhibit a slightly di�erent distribution. We however have on�dene thatthe global shape of the distribution is the one we observed.5. Files' life durationWe now study the �les' life duration distribution, whih we denote by
Fk. Informations about �les are only available in the queries dataset . In thissetion and the rest of this paper, we only onsider the �les for whih thereis at least one provider, beause many �les in the dataset are queried for butare never provided. These are �les whih don't exist in the system, at leastduring the measurement, and we therefore do not take them into aount.There are two possible ways to de�ne a �le's life duration. The �rst oneis the same as for users' sessions lengths: onsidering that a �le is not present13



in the system if there is no onseutive queries for this �le distant from eahother by less than a given threshold. In the seond ase, the life durationof a given �le is de�ned by the time interval between the �rst and the lastquery for this �le. Considering a threshold is not neessarily relevant here:we expet �les to be more stable in the system than users, and the fat thata �le is not queried for a (short) amount of time does not neessarily meanthat it is not present in the system anymore.We studied both de�nitions. In both ases this property does not stabilize.We present here the results obtained for the seond de�nition, beause theylead to interesting insight.
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10 weeks(b) l = 1, 2, 5 and l = 10 weeks.Figure 10: Complementary umulative distributions of Fk(W0,l) for di�erent ob-servation window lengths l.Figure 10 (a) presents the omplementary umulative distribution Fk(W0,l)for di�erent values of l, from l = 1 hour to l = 4 days. We an see that theshape of the di�erent distributions evolves strongly with l. This is also thease if we inrease l and study the distributions orresponding to l = 1, 2, 5and l = 10 weeks (Figure 10 (b)).We observe that, the larger the observation window is, the larger thevalues of �les' life durations tend to be: this an be explained by the fatthat some �les exist in the system for very long periods of time, so theirobserved life duration inreases with the observation window length.In order to on�rm these observations more formally, we ompare thedistributions with the K-S test and M-K distane. Figure 11 (a) presentsKS(Fk(W0,l), Fk(W0,lmax
)) as a funtion of l. We an see that the valuesobtained are very high and vary muh when l inreases: for a measurementduration orresponding to l = 1344 hours (8 weeks), the K-S test valueis still greater than 60%. We also ompare the same distributions usingthe M-K distane and study MK(Fk(W0,l), Fk(W0,lmax

)) as a funtion of l14
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)) as afuntion of l.Figure 11: Study of the evolution of Fk(W0,l) with the K-S test and the M-Kdistane.(Figure 11 (b)). It shows the same behavior as the K-S test: the values ob-served tend to derease linearly and are very large.
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Figure 12: Mean and standard devi-ation of Fk(W0,l), as a funtion of l.
We present in Figure 12 the meanand standard deviation of the distribu-tions Fk(W0,l), as a funtion of l. Wean see that they both evolve ontinu-ously as the observation window lengthinreases. These observations are on-sistent with Figure 10 and show that,the longer the observation window is,the larger the �les' life durations are.We an investigate whether the distributions do evolve linearly with theobservation window length l by normalizing them with respet to l. In orderto do so, we divide the values of the x axis of the distribution Fk(W0,l) bythe observation window length l. To obtain normalized distributions, we alsomultiply the values of the y axis by l.We present the orresponding normalized distributions in Figure 13 (a),for l = 1, 5 and 10 weeks. To better understand these plots, we also presentthe regular distributions (i.e., not normalized) in Figure 13 (b). We observeseveral things.First, the normalized distributions all present peaks at the maximal pos-sible values (604, 800s = 1 week, whih is the normalization unit for thisplot). This orrespond to the fat that a relatively large fration of �les havea life duration equal to the observation window length, as an be observedin Figure 13 (b). 15



Seond, the normalized distributions present some intermediary peaks,whih are not at the same x-values for the di�erent distributions. This isaused by the fat that the regular distributions (Figure 13, b) present peakswhih oinide. We observed a similar phenomena for users' session lengthsin Setion 3. This is aused by the fat that some lients send periodialqueries, see Figure 1 (a). When the distributions are normalized, these peaksshift aordingly and the distributions do not oinide.
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(b) Regular Distributions.Figure 13: Distributions of Fk(W0,l) for observation window lengths l = 1, 5 and
10 weeks.
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Figure 14: Mean and standard de-viation (for distributions normalizedwith respet to l) of Fk(W0,l), as afuntion of l.

Sine the K-S test and M-K distanean be omputed only on umulativedistributions, it is not possible to om-pute them for the distributions shownin Figure 13 (there is no natural wayto ompute the umulative of a distri-bution normalized in this way). Wetherefore just study the mean and stan-dard deviation of the normalized distri-butions, whih we present in Figure 14.We observe that, after some initial �u-tuations, they both stabilize (note thatthe standard deviation stabilizes morequikly than the mean). It is interest-ing to note that the fat that the mean and standard deviation stabilize doesnot mean that the orresponding distributions also stabilize.Finally, this property annot be haraterized in our measurements. The(regular, un-normalized) distributions evolve ontinuously with the length ofthe observation window. Normalizing the distributions by the length of the16



observation window shows that this evolution is not regular, even though itis possible to haraterize their mean and standard deviation. It remainsan open question whether this property ould be haraterized if measure-ments longer than 10 weeks were performed, or whether it is intrinsially notstationary.6. Number of queries per �leWe now study the distribution of the number of queries per �le Qk, inthe queries dataset .
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(b) l = 1, 5 and l = 10 weeks.Figure 15: Complementary umulative distributions of Qk(W0,l) for di�erent ob-servation window lengths l.Figure 15 presents the omplementary umulative distribution Qk(W0,l)for di�erent values of l, from l = 1 hour to l = 10 weeks. We an see that thedi�erent distributions have some ommon properties: globally, we observe alinear shape at the beginning of eah distribution whih shows that there is alarge fration of �les with a small number of queries (this fration dereasesas l inreases). The tail of these distributions, however, tends to �attenwhih means that there is a small fration of �les with a very large numberof queries. We observe also that the distributions evolve signi�antly with l:the number of queries per �le inreases with the observation window length.We on�rm that this property doesn't stabilize with the K-S test and M-Kdistane. Figure 16 (a) presents KS(Qk(W0,l), Qk(W0,lmax
)) as a funtion of

l. First, we an see that the values are very large: the values start almostat 80% for an observation window orresponding to l = 12 hours, to reaharound 35% for l = 1 week. After this, the values tend to derease linearly.The M-K distane follows almost the same behavior (Figure 16 (b)), exeptthat the values tend to derease more linearly. These observations are quiteonsistent with the ones obtained from Figure 15.17
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Figure 17: Mean and standard deviation of Qk(W0,l), as a funtion of l.As seen before (for the �le's life durations, see Setion 5), the distribu-tions seem to evolve linearly with the observation window length. In orderto investigate this, we study the distributions normalized with respet to theobservation window length. We perform this normalization in the same wayas in the previous setion, i.e. we divide the x values by l, and multiplythe y values by l. The obtained distributions are shown in Figure 18. Wean observe that the these distributions oinide, whih means that they doevolve linearly with the observation window length.This is on�rmed by the mean and the standard deviation for the nor-malized distributions presented in Figure 19. We observe that the valuesobtained for the mean and the standard deviation follow the same behavior:at the beginning, they tend to derease quikly, then stabilize one l reahesapproximately 1 week. Note that the standard deviation dereases slightlywith l, whih seems to indiate that the proportion of very large values (af-18
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(b) l = 1 week, 5 weeks and 10 weeks.Figure 18: Distributions of Qk(W0,l) for di�erent observation window lengths l,normalized with respet to the time duration.ter the bend of Figure 15) tends to derease. It remains an open questionto see whether it would beome ompletely stable with longer observationwindows.
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Figure 19: Mean and standard deviation (for distributions normalized with respetto the time duration) of Qk(W0,l), as a funtion of l.Finally, we an onlude that the distributions of the number of queriesper �le evolve when the observation window length l inreases. However,the study of these distributions normalized by l shows that this evolution islinear, whih means that we are able to haraterize this property.7. Number of queries per sessionWe now study the distribution of the number of queries by session Gk,in the queries dataset. We onsider the same de�nition of sessions as in Se-tion 3.1, and study the number of queries the orresponding user performedwithin eah session.Figure 20 presents the omplementary umulative distribution Gk(W0,l)for di�erent values of l, from l = 1 hour to l = 10 weeks.19
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(b) log-log sale.Figure 20: Complementary umulative distributions of Gk(W0,l) for di�erent ob-servation windows lengths l.In Figure 20 (a), we present these distributions in logarithmi sale onthe x-axis and a linear sale on the y-axis. We an see that the shapesof the distributions are very similar, with a large fration of sessions witha small number of queries and a small fration of sessions with more than
1 000 queries. We observe that for an observation window larger than 1 day,the distributions overlap almost ompletely and do not seem to evolve when
l inreases.When we ompare the same distributions but with a logarithmi sale onboth axis (Figure 20 (b)), we observe that they seem visually more di�erent.However, we an observe that the distributions orresponding to l = 1, 3 and
10 weeks, are similar for more than 99% of the values. They are di�erentonly values larger than 1 000, whih are after the bend of Figure 20 (a).
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)) as afuntion of l.Figure 21: Study of the evolution of Gk(W0,l) with the K-S test and the M-Kdistane.Figure 21 presents KS(Gk(W0,l), Gk(W0,lmax

)) and MK(Gk(W0,l), Gk(W0,lmax
))as a funtion of l. We an observe that they both follow the same behavior:the �rst values are high, and derease quikly until l = 24 hours. After this,20



they derease slightly and tend to stabilize after l = 1 week. This shows thatthe orresponding distributions are very lose to eah other whih is quiteonsistent with our observations from Figure 20.
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Figure 22: Mean and standard deviation of G(W0,l), as a funtion of l.In Figure 22, we present the mean and the standard deviation of Gk(W0,l)as a funtion of l. We observe that the values of the mean derease slightly atthe beginning and beome stable one l reahes 1 week, at the same time asthe K-S test and the M-K distane. This shows that an observation windowof one week is long enough to haraterize the shape of this property. Thestandard deviation, however, does not seem to stabilize as the observationwindow length inreases. This an be explained by the presene of very largevalues (larger than 1 000), whih we have seen in Figure 20.Finally, we an observe that this property has a very similar behaviorwith the �rst property we have studied (users' session length, Setion 3).We distinguish two parts in the distribution: the �rst one orresponds to thelarge fration of sessions with less than 1 000 queries, whih we are able toharaterize. The seond one orresponds to the small fration of extremevalues whih are not haraterized by our methodology.8. Related WorkThe fat that the observation window length impats the observed prop-erties of a dynami system has mainly been aknowledged for hurn, i.e. thedynamiity of users, in P2P systems [2, 11, 12, 16, 13, 14℄.Willinger et al. [17℄ addressed, in the ontext of IP �ows, the question ofwhether the observation window is long enough to haraterize some dynamiproperties. They study the standard deviation of the �ow size distributionas a funtion of the measurement length, and argue that the fat that itdoes not onverge means that the samples may ome from an underlying21



distribution with in�nite variane. This in turn may make it di�ult to �tthe observed properties with a model.The reate-based method [11, 12℄ is based on the observation that beingable to only apture aurately the length of sessions that begin and endwithin the measurement window reates a bias towards short sessions. Toremove this bias, the measurement window of length T is divided into twohalves, and only the sessions that begin during the �rst half and last lessthan T/2 are onsidered. This leads to an unbiased estimation of sessionswith length less than T/2.This methodology is omplementary to the one we introdue here, whihdoes not formally remove the bias, but allows to make observations for theshape of the distribution even for values larger than T/2. Moreover, ourobservations show that if the measurement window is too short, the reate-based method will in some ases fail to provide an unbiased estimation.Finally, this method only applies to properties for whih a notion of sessionan be de�ned, whih is not always the ase. For instane, it annot be ap-plied to the study of the number of queries for eah �le, whih we performedin Setion 6.Finally, the bias aused by the �niteness of the observation window isnot the only one ourring in our ontext. Stutzbah and Rejaie [13℄ studieddi�erent aspets of peer dynamis in three di�erent lasses of P2P systems(Gnutella, Kad and BitTorrent). They arefully analyzed the di�erent kindsof bias that may in�uene suh a study, and presented a list of those theyidenti�ed, whih inludes problems linked to aurate peer identi�ation.Wang et al. [16℄ argue that the reate-based method is biased when thedata is obtained through periodi sampling, beause short events may bemissed or inorretly observed. They propose a new sampling algorithmalled RIDE (ResIDual-based Estimator) whih measures session length dis-tributions with high auray and requires a low sampling frequeny.Stutzbah et al. [14℄ investigate the issues arising when the whole systemis not known, and informations about the nodes and links are obtained by asampling proedure (in this ase, random walk-based methods), in the asewhere the system evolves while the sampling proess is under progress.Friggeri et al. [4℄ studied ontat networks aptured with sensors ableto detet when they are lose to eah other. They studied the bias on theobserved ontat duration aused by the fat that some sensors may fail todetet eah other at some times.
22



9. Conlusion and Future WorkIn this paper we introdued an empirial methodology for deiding whenthe bias indued by the �niteness of the observation window in dynamisystems beomes negligible. We illustrated its relevane by applying it tothe study of several properties in a large P2P system.This brought several key onlusions:
• if a system is observed for a period of time that is too short, it is notpossible to obtain an aurate evaluation of its properties, whih showsthe relevane of our methodology;
• in a same system, it is possible to haraterize some properties, butnot others. This is the ase for instane in the queries dataset , inwhih it is possible to haraterize aurately the session length dis-tribution, but not the �le life duration distribution. This shows thatthere is no absolute relevant time sale to study a system, but thateah property must be studied independently. This is on�rmed bythe fat that, for the properties that we were able to haraterize, theminimum observation window length required is not exatly the same.Our methodology does not allow us to deide whether the propertiesthat we were not able to haraterize are not stationary, or if longermeasurements would be required to haraterize them;
• the degree to whih we are able to haraterize the system's propertiesvaries: in some ases we are able to haraterize the whole distribution,in others we an haraterize the distribution exept some extremevalues, and in others we know the global shape of the distribution, butannot trust its exat numerial properties. Knowing to whih extentone an trust in a given property is a very valuable insight for the studyof any system.Finally, one key advantage of our methodology is that it an be appliedto any property in any dynami system, and allows to know whih observedproperties an be trusted and whih annot.An interesting diretion for extending this work would be to study modelsfor the di�erent properties we studied. This would allow us to gain a betterintuition on the studied phenomena, and on�rm formally our results. Itmay also provide formal bounds for the minimum observation window lengthneeded to haraterize a given property with a given auray.Finally, we presented here a methodology for dealing with the bias in-trodued when measuring the dynamis of a system. In many systems, and23
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