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Abstract

Characterizing accurately the dynamics of evolving networks (such as
P2P systems, the internet topology, ...) is a difficult task, because several
factors can introduce a bias in the observed properties. In particular, the
fact that we can observe a given system only for a finite duration intro-
duces a bias, because events occurring before or after the observation are
missed. Although this bias tends to decrease when the observation window
length increases, it is difficult to quantify its importance, or know how fast
it decreases.

Here, we introduce a general methodology that allows to know if the
observation window is long enough to characterize a given property.

We apply this methodology to the study of several properties in a large
P2P system, using two different and complementary datasets. We show that
an observation window that is too short does indeed induce a bias, and that
our methodology allows to detect this. We also show that there is no overall
satisfying duration for observing a given system. While some properties can
be characterized with a given observation window length, others cannot be
characterized at all in our datasets, either because the measurement was not
long enough, or because the property is intrinsically not stationary. In either
case, these properties cannot be trusted.
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1. Introduction.

Many systems are naturally dynamic. For instance in the internet, routers,
As and/or links between them are created or deleted [9, 10]; in P2P networks,
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users join or leave the system [13, 12, 8], and exchange different files at dif-
ferent times; in online social networks users may create or delete accounts,
or cease to be active, and create or delete connections with other users [15].

In all these cases, understanding the dynamics of the system is a key
issue. However, accurately measuring this dynamics is a difficult task. In
particular, the fact that the observation window is necessarily finite induces
a bias in the observations [11, 13, 12]. Though this bias tends to decrease
when the observation window length increases, it is difficult to quantify it in
practice, and know whether it is negligible or not.

Another problem is that a small observation window may not be rep-
resentative of the whole behavior of the system. For instance, measuring
the activity in a P2P system during one hour is not enough to capture fully
the dynamics of user usages, because of day/night activity variations for in-
stance. However, it is not a priori clear whether one day, or two, or one
week, is long enough.

In this paper, we introduce a new methodology that allows to rigorously
characterize dynamic metrics in real-world dynamic systems. This method-
ology is different and complementary to other methodologies existing in the
literature [13, 12|, and has two main advantages:

e it allows to determine if the observation window length was sufficient
for a rigorous characterization;

e it can be applied to any property characterizing the dynamics of a
system.

To illustrate the relevance of this methodology, we apply it to the study of
several properties in the eDonkey P2P system. We use two different datasets
which provide complementary information.

This document is organized as follows. In Section 2, we introduce our
methodology and present the datasets we use. In Section 3 to 7 we apply
our methodology to the study of several properties describing the system.
We present related work in Section 8, and our conclusions and future work
in Section 9.

2. Methodology and Data

2.1. Methodology

Suppose we start observing a dynamic graph at a time ¢, for a duration [.
We denote by Wy this observation window. We are faced with two problems



if we want to characterize the graph’s dynamics from the observation of Wy ;.
First, [ must be long enough for W;; to be representative. For instance, it
seems hopeless to characterize rigorously the activity in a P2P system after
observing it for a single hour: at the very least, this does not allow to observe
the activity variation according to the time of the day. Second, even if it is
representative, the fact that [ is finite still induces a bias in the observations.
Events occurring before ¢ or after ¢ 41 are not observed, which prevents from
characterizing accurately some quantities (for instance, session lengths, or
time correlations between different events). An important point to observe
is that the longer the measurement period, the smaller the bias induced.

Our methodology addresses these two issues at the same time. Intu-
itively, it aims at deciding if the measurement period W;; is long enough to
characterize a given property P, i.e. if the bias induced by its finiteness on
the observed property is negligible. If the window W} ; is long enough, then
if we use a longer window of length [ + x, the observed property does not
change: P(Wy;) = P(Wy44).

In order to decide when a window is long enough, we use windows of
increasing length Wy 1, Wiy, ..., Wiy, (I < la < ... <l,). By studying how
the observed property P(Wy;,),P(Wyy,), ...P(Wyy,,) evolves as a function of
I, we determine if it is correctly evaluated or not: if it fluctuates or varies
greatly as [ increases, then P is certainly not accurately evaluated. Indeed,
a shorter or longer observation window would have yielded a different value.
Instead, if P tends to become stable as the window length [ increases, then
it is probably accurate.

Finally, an important point is that characterizing a property P only
makes sense if it is stationary, i.e. if P does not evolve while the mea-
surement is under progress. Notice however that if it is not stationary, our
methodology will not be able to provide a characterization: the observed
property P will not become stable when the observation window length [ in-
creases. If it does become stable, this means both that W;; is long enough,
and that P is stationary !.

Notice that, depending on the property studied, other types of bias can
occur, see for instance [13]. In our context, some come from the identification
of users and their sessions. We do our best to deal with them in a rigorous
way, as we detail in the following sections. However, we stress on the point

!Note that the system may be stationary with respect to a given property P and not
another one P’; in such a case our methodology will provide a characterization for P and
not for P’.



that our goal here is not to address all kinds of biases at the same time, but
to exhibit the role played by the observation window length.

Here, most of the properties we study are distributions. In general we
will denote a distribution with a subscript & to indicate that it is a function
of k, e.g. P;. To study how an observed distribution P} evolves with the
length of the observation window, we will first plot the observed distributions
Py (W) for different values of [. We note that we take ¢ as the beginning of
our measurement period, therefore we set t = 0 in the following.

In order to confirm more formally the visual observations, we will also
study two statistical indicators which quantify how close two distributions
Py, and Q) are to each other. The Kolmogorov-Smirnov test, or K-S test [3]
compares two normalized cumulative (complementary or not) distributions
P, and Q. It is equal to the maximum, for all values k, of the distance
between the two cumulative distributions: KS(Py, Qx) = maxy | Py — Qgl. It
is always lower than 1, and the closer it is to 0, the more similar the two
distributions are.

An important question raised by the K-S test is to know if the distribu-
tions differ by the resulting value at all points, or just at one point. In order
to help us answering this question, we study the Monge-Kantorovich distance,
or M-K distance [5] which is equal to the mean of the distance between the
two (cumulative) distributions: MK(Py, Qr) = (D4 [Pk — Qk|)/kmax. Two
distributions that only differ in a single point will therefore have a high K-S
test, but a small M-K distance. We use these indicators to study how the
observed distribution P(W;) evolves: we compute the K-S test (respec-
tively the M-K distance) between P(Wy;) and P(Wy,,... ), where lp,q, is the
length of the longest observation window available for this dataset, and plot
this as a function of [. Following [17], we also study the mean and standard
deviation of P, (Wy,;) as a function of /.

2.2. Data

We use two datasets: the first consists in the capture of the UDP traffic
of a large eDonkey server [1]. It consists of the queries made by users (for
lists of files matching certain keywords, or for providers for a given file), and
of the server’s answers to these queries. There are two types of queries. The
first one are of the following form:

T IP I,

where T is the time at which this query was made, I P is the (anonymized) IP
address of the user making this query, and L is a list of keywords describing



the wanted file. The servers’s answer is of the following form:
T IP (F1,51) (F2,S2) ... (Fn,Sn),

where IP is the IP address of the user receiving this answer and (Fy,S;)
(Fy,S2) ...(Fy,Sy) is a list of file identifiers matching the keywords, together
with one provider for each file.

The second type of queries is of the following form:

T IP F, Fy .. F,,

where F] F5 ... F,, is a list of file identifiers the user wants to download. The
server’s answers to these queries have the following form:

T IP (Flasll---Slnl) (FQ,SQl...SQn2) (Fnasnl---snnn)7

where Sp1...Sky, is a list of providers for file Fj,.

The measurement lasted for 10 weeks, which represents 1 billion mes-
sages, with 89 million peers and 275 million files involved.

The second dataset consists in a capture of the logins and logouts of
peers on an eDonkey server [8]. The login and logout information gives us
the precise session length of users. A small number of session however present
some problems:

e some sessions do not end in our dataset, most probably because the
measurement stopped before the user disconnected;

e some sessions of a same user are nested within one another, for instance
we observe two consecutive logins followed by two consecutive logouts.
It is not possible in this case to know which logout corresponds to
which login, and therefore we do not know the session length.

We discarded these two types of sessions in our analysis (they represent
approximately 2% of all sessions). This dataset contains more than 200
millions of connections by more than 14 millions of peers, over a period of
27 days.

The two datasets are complementary: the first one does not give connec-
tion and disconnection times of users, and the second one does not contain
information about queries. In the following, we will call the first dataset the
queries dataset and the second one the logins dataset.



3. Users’ session lengths — queries dataset

Here, we study the property Sy corresponding to the session length dis-
tribution, in the queries dataset. Since the session lengths are not directly
available in this dataset (see Section 2.2), we have to infer them from the
study of the queries made by a user. We detail this below, before turning to
the actual study of the session length distribution.

3.1. Identification of users and sessions

Identifying users in our data is a difficult question. We only have access
to the 1P addresses of the computers from which queries are entered. A com-
puter is identified by an 1P address at a given time, but this may change and
we are unable in general to detect that a same computer has two different
addresses (because of dynamic addresses for instance) and/or that two com-
puters are using the same address (because they are behind a same NAT for
instance). In addition, a same user may use several computers, and several
users may use the same computer, making identification of users even more
challenging. In the absence of a satisfying method for identifying users, there
are two natural solutions: the first one consists in considering that a user
corresponds to an IP address, and the other one consists in considering that
a user corresponds to an IP address, together with the UDP port used.

We use here the first one, which allows to capture meaningful sessions (as
explained below) and is therefore relevant. Moreover, we performed the same
analysis by using the second definition, which also ensures the reliability of
our results.

We infer sessions for a given user by studying the time elapsed between
consecutive queries.

It is natural to consider that two consecutive queries made by a same
user belong to the same session if the time elapsed between them is short,
and belong to two different sessions if it is long. The question is then to
find an appropriate threshold for distinguishing between these two cases. In
order to give an answer to this question, we studied the inter-query time
distribution, presented in Figure 1 (we display both the distribution (a) and
the complementary cumulative distribution (b)).

We observe clear peaks at 60 seconds and at multiples of it (120, 240,
300, 900, ...) in the distribution (they can be more clearly seen in the inset).
These peaks indicate that, though users decide which queries to make and
when they make them, there is a strong influence of the protocol on the
observed data: most client applications automatically perform periodical
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Figure 1: Inter-query time distribution, for the queries dataset.

queries. Although these peaks become smaller after 1800 s, a zoom on the
plot (not presented here) shows that they are clearly defined for values up
till at least 20 000 seconds.

In order to smooth out the plot, we consider the complementary cumu-
lative distribution (Figure 1 (b)). There is a high density of values between
1000 and a value slightly smaller than 10000 (the slope of the distribution
is steep in this region). Such a high density indicates normal inter-query
lengths within a session, and choosing a threshold in this region or before it
would have little meaning. Therefore, we argue that the threshold must be
at least as large as 10000 seconds.

To study the importance of the peaks in the distribution, we computed,
for a same measurement window, the session length distributions obtained
with two different thresholds, the first chosen just before a peak and the
second just after this same peak. We made a comparison between these two
distributions and we observed no significant difference.

Finally, we have chosen to use a threshold of ¢t = 10800 seconds, i.e. 3
hours. Therefore, in the following, if a same user sends consecutive queries
separated by less than three hours, these queries belong to a same session,

otherwise they belong to different sessions .

2A detailed study of session lengths would probably benefit from studying other values
for this threshold. However our goal here is to illustrate our methodology and show that we
can obtain interesting insights on the characteristics of session lengths. Other thresholds
lead to similar results to this respect.



3.2. Characterization of session lengths

We now apply our methodology to the study of the session length distri-
butions, by studying Si(W)y,;) for different values of .
We first observe that these distributions are highly irregular. They present
clear peaks and valleys, which are linked to the peaks in the inter-session
time distribution, see Figure 1 (a). Similar observations hold for different
observation window lengths and positions. We will therefore consider com-
plementary cumulative distributions, to smooth out the irregularities.
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Figure 2: Complementary cumulative distributions of Sy (W ;) for different obser-
vation window lengths I, for the queries dataset.

Figure 2 presents the complementary cumulative distribution Sy (W)
for different values of [, up to | = 2 weeks. The fractions of sessions with
length 0 are not the same, which causes the normalized distributions to be
vertically shifted?. The shapes of these distributions are however similar,
with a small fraction of sessions with length smaller than 2000 s, and an
approximately linear shape between 2000 s and 100000 s. However, when
I < 1 day, the distributions exhibit a clear cut-off. This is not the case
anymore for [ > 4 days: the tail of the distribution flattens after a bend
occurring close to 100000 s (~ 28 hours), and we observe a small fraction
of extreme values after this bend. For observation windows larger than four
days, the shape of the distribution does not seem to evolve anymore: Figure 2
(b) shows that the distributions for [ = 1 week and | = 2 weeks are very
similar to each other and to the one obtained for [ = 4 days.

However, when [ increases again, we observe a small difference between
the corresponding distributions. Figure 3 (a) shows Sj(Wy ;) for | = 1 week

3Since the z-axis is in log-scale, the point (0, 1) which belongs to all these distributions
does not appear.
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Figure 3: Complementary cumulative distributions of Si(Wy ;) for observation
window lengths [ = 1 week and [ = 10 weeks, for the queries dataset.

and [ = 10 weeks. We observe a small gap between them, caused by the
fraction of sessions of length 0 (which again does not appear because of
the log-scale on the z-axis): when the distribution is normalized by the
number of sessions with length strictly larger than 0 (Figure 3 (b)), this gap
disappears. This shows that, though the shape of the distribution does not
vary anymore, the fraction of sessions with length 0 does.

When considering windows Wy, ; and W, ; of the same length but with
different starting points, we observe that in general So(Wy, 1) # So(Wi,1)-
As above, this difference is due to the fraction of sessions with length 0 which
differs between these two distributions. This shows that the fraction So(W;;)
of sessions with length 0 depends both on ¢t and [, but that the general shape
of the distribution, when this fraction is not taken into account, does not
change.

We saw that the distributions seem
visually not to change once the obser- NN Jwes
vation window length has reached four )
days. However, one must be careful
when driving conclusions from a visual
examination. Indeed, Figure 4 shows
the distributions for [ = 1 week and
[ = 2weeks, but with a linear scale on om0 700000
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the queries dataset.
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are values seen after the bend of Figure 2 (b), and are significantly rarer than
values below this bend. This leads us to consider them as extreme values.
The fact that the extreme values change when [ increases shows that they
cannot be characterized with our methodology, and we leave their study for
further work.
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Figure 5: Study of the evolution of Sy with the K-S test and the M-K distance,
for the queries dataset.

We now study the evolution of the distributions with the K-S test and M-
K distance. Figure 5 (a) presents KS(Si(Wo,), Sk(Wo4,...)) as a function of
[. The first values are high, and decrease quickly to approximately 4% for an
observation window corresponding to I = 24 hours. After this, the decrease
is linear. This clearly shows that observation windows of less than 24 hours
are not representative. However, we do not know if the value 4% is small
enough to consider that the distributions are similar or not. Moreover, the
linear shape does not correspond to a value which fluctuates before becoming
stable. This plot does therefore not allow us to decide when the observation
window becomes long enough, or even to know if this happens during the
measurement. Therefore, we cannot reach a conclusion with the K-S test.

We present the comparison with the M-K distance in Figure 5 (b): we
compute MK(S(Wy ), S(Wo,...)) as a function of I. We observe a different
behavior: the values observed tend to decrease (with fluctuations), until the
observation window reaches approximately 150 hours (6 days and 6 hours).
After this, the value of the M-K distance becomes very small: this shows
that the corresponding distributions are very close to each other.

Finally, Figure 6 presents the standard deviation and the mean of S, (W)
as a function of [. We can see that the mean becomes stable once [ reaches
approximately 1 week, at the same time as the M-K distance. This con-
firms that an observation window of one week is long enough to accurately

10
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Figure 6: Mean and standard deviation of Si(Wp,), as a function of [, for the
queries dataset.

estimate the distribution. The standard deviation, however, does not seem
to stabilize as the observation window length increases?, confirming that
the distribution cannot be fully characterized. This is consistent with the
distinction between the normal part of the distribution and extreme values.
Indeed, the extreme values are very large and therefore have a strong im-
pact on the standard deviation. The fact that they cannot be characterized
causes the standard deviation to vary, whereas the fact that the normal part
of the distribution is characterized causes the mean to become stable.

This confirms the intuition obtained by the visual study of the distri-
butions: once the observation window length reaches one week, the normal
part of the session length distribution stops evolving. This means two things.
First, this distribution is stationary over time scales of the order of the whole
measurement length, and it therefore makes sense to characterize it. Second,
an observation window of one week is long enough to accurately estimate it.
The extreme values of this distribution cannot however be characterized by
our methodology.

4. Users’ session lengths — logins dataset

We now study the session length distributions Sg, in the logins dataset.
Figure 7 shows the complementary cumulative distribution Sy (W) for
different values of [, up to I = 27 days. We can see that the shape of
these distributions are similar, and get closer to each other as [ increases: in
Figure 7 (a), we observe that the distribution corresponding to [ = 6 hours

“Notice that, if we had stopped the measurement at 1200 hours, we would have had the
impression that it stabilizes, hence the importance to have an observation window long
enough.

11
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Figure 7: Complementary cumulative distributions of Sy (W ;) for different obser-
vation window lengths I, for the logins dataset.

is a little different from the other distributions. For [ = 1 day to [ = 4 days,
the distributions are closer to each other. When we increase [ to 7 and 27
days (see Figure 7 (b)), the distributions remain close, but we observe also
that the distribution corresponding to [ = 4 days is closer to the distribution
corresponding to [ = 27 days than the one corresponding to [ = 7 days.

In order to get a better intuition, we compare these distributions with the
K-S test and M-K distance. Figure 8 (a) presents KS(Sx(Wo.1), Sk(Wo.1m0s))
as a function of . We can see that the values are high at the beginning,
and decrease quickly to approximately 2% for an observation window corre-
sponding to | = 4 days. After this, the values increase slightly until [ = 7
days, which is consistent with our observations from Figure 7 (b). After
I = 200 hours, the values tend to decrease almost linearly.
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Figure 8: Study of the evolution of Si(Wy;) with the K-S test and the M-K
distance, for the logins dataset.

When we compare the same distributions using the M-K distance (Fig-
ure 8 (b)), we do not observe the same phenomena. The values obtained tend
to decrease linearly which means that the distributions change at a more or

12



less constant rate. This shows that, though they are visually close and have
a relatively small K-S test, the distributions corresponding to I = 4 days
and [ = 27 days are not this close to each other. Indeed, a more detailed
examination of the distributions showed that the distance between them is
not very large, but is present for a wide range for x values. The distance
between the distributions corresponding to | = 7 days and [ = 27 days is
only large for small z values.
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Figure 9: Mean and standard deviation of Si(Wp,), as a function of [, for the
logins dataset.

Finally, we also compute the mean and the standard deviation of Sy, (W)
as a function of [, which we present in Figure 9. We observe that both of them
increase linearly with the observation window length, which is consistent with
the observations made with the M-K distance.

We have seen that the distributions Si(Wp;) are visually close to each
other as soon as [ is not too small. However, the numerical analysis shows
that they evolve more or less linearly with [. Therefore, we cannot fully
characterize this property because a longer or shorter measurement would
exhibit a slightly different distribution. We however have confidence that
the global shape of the distribution is the one we observed.

5. Files’ life duration

We now study the files’ life duration distribution, which we denote by
F}.. Informations about files are only available in the queries dataset. In this
section and the rest of this paper, we only consider the files for which there
is at least one provider, because many files in the dataset are queried for but
are never provided. These are files which don’t exist in the system, at least
during the measurement, and we therefore do not take them into account.

There are two possible ways to define a file’s life duration. The first one
is the same as for users’ sessions lengths: considering that a file is not present

13



in the system if there is no consecutive queries for this file distant from each
other by less than a given threshold. In the second case, the life duration
of a given file is defined by the time interval between the first and the last
query for this file. Considering a threshold is not necessarily relevant here:
we expect files to be more stable in the system than users, and the fact that
a file is not queried for a (short) amount of time does not necessarily mean
that it is not present in the system anymore.

We studied both definitions. In both cases this property does not stabilize.
We present here the results obtained for the second definition, because they
lead to interesting insight.
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Figure 10: Complementary cumulative distributions of Fj(Wy ;) for different ob-
servation window lengths [.

Figure 10 (a) presents the complementary cumulative distribution £}, (W ;)
for different values of [, from [ = 1 hour to [ = 4 days. We can see that the
shape of the different distributions evolves strongly with [. This is also the
case if we increase [ and study the distributions corresponding to [ =1, 2, 5
and | = 10 weeks (Figure 10 (b)).

We observe that, the larger the observation window is, the larger the
values of files’ life durations tend to be: this can be explained by the fact
that some files exist in the system for very long periods of time, so their
observed life duration increases with the observation window length.

In order to confirm these observations more formally, we compare the
distributions with the K-S test and M-K distance. Figure 11 (a) presents
KS(F,(Wo,), Fi(Wo,m..)) as a function of [. We can see that the values
obtained are very high and vary much when [ increases: for a measurement
duration corresponding to | = 1344 hours (8 weeks), the K-S test value
is still greater than 60%. We also compare the same distributions using
the M-K distance and study MK(Fy,(Wo;), Fi(Wo,i,n..)) @s a function of [
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Figure 11: Study of the evolution of Fj(Wpy,;) with the K-S test and the M-K
distance.

(Figure 11 (b)). It shows the same behavior as the K-S test: the values ob-
served tend to decrease linearly and are very large.

We present in Figure 12 the mean 5605 e
. . . . 4.5e+06 Standard deviation -=----
and standard deviation of the distribu- aes06
tions Fj,(Wo,), as a function of I. We  *Ii%
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the larger the files’ life durations are.

Figure 12: Mean and standard devi-
ation of Fy,(Wp,), as a function of .

We can investigate whether the distributions do evolve linearly with the
observation window length [ by normalizing them with respect to [. In order
to do so, we divide the values of the z axis of the distribution Fj(Wy;) by
the observation window length [. To obtain normalized distributions, we also
multiply the values of the y axis by (.

We present the corresponding normalized distributions in Figure 13 (a),
for [ = 1,5 and 10 weeks. To better understand these plots, we also present
the regular distributions (i.e., not normalized) in Figure 13 (b). We observe
several things.

First, the normalized distributions all present peaks at the maximal pos-
sible values (604,800s = 1 week, which is the normalization unit for this
plot). This correspond to the fact that a relatively large fraction of files have
a life duration equal to the observation window length, as can be observed
in Figure 13 (b).
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Second, the normalized distributions present some intermediary peaks,
which are not at the same z-values for the different distributions. This is
caused by the fact that the regular distributions (Figure 13, b) present peaks
which coincide. We observed a similar phenomena for users’ session lengths
in Section 3. This is caused by the fact that some clients send periodical
queries, see Figure 1 (a). When the distributions are normalized, these peaks
shift accordingly and the distributions do not coincide.
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Figure 13: Distributions of Fj (W ;) for observation window lengths [ = 1, 5 and
10 weeks.

Since the K-S test and M-K distance
can be computed only on cumulative % ST e e e

distributions, it is not possible to com- 2400
pute them for the distributions shown 27|

2000 [

in Figure 13 (there is no natural way — o

1600 |

to compute the cumulative of a distri- .
bution normalized in this way). We 20|

: 0 200 400 600 800 1000 1200 1400 1600 1800
therefore just study the mean and stan- Oheorvation et i hore

dard deviation of the normalized distri-

butions, which we present in.F‘ig‘ure 14. Figure 14: Mean and standard de-
We observe that, after some initial fluc- ;4500 (for distributions normalized
tuations, they both stabilize (note that with respect to 1) of Fj(Wo,), as a
the standard deviation stabilizes more function of .

quickly than the mean). It is interest-

ing to note that the fact that the mean and standard deviation stabilize does
not mean that the corresponding distributions also stabilize.

Finally, this property cannot be characterized in our measurements. The
(regular, un-normalized) distributions evolve continuously with the length of
the observation window. Normalizing the distributions by the length of the

16



observation window shows that this evolution is not regular, even though it
is possible to characterize their mean and standard deviation. It remains
an open question whether this property could be characterized if measure-
ments longer than 10 weeks were performed, or whether it is intrinsically not
stationary.

6. Number of queries per file

We now study the distribution of the number of queries per file @i, in
the queries dataset.
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(a) {=1h, 12 h, 1 day and 4 days. (b) I =1,5 and I = 10 weeks.

Figure 15: Complementary cumulative distributions of Qy(Wy ;) for different ob-
servation window lengths .

Figure 15 presents the complementary cumulative distribution Qx (W)
for different values of [, from [ = 1 hour to [ = 10 weeks. We can see that the
different distributions have some common properties: globally, we observe a
linear shape at the beginning of each distribution which shows that there is a
large fraction of files with a small number of queries (this fraction decreases
as [ increases). The tail of these distributions, however, tends to flatten
which means that there is a small fraction of files with a very large number
of queries. We observe also that the distributions evolve significantly with {:
the number of queries per file increases with the observation window length.

We confirm that this property doesn’t stabilize with the K-S test and M-K
distance. Figure 16 (a) presents KS(Qr(Wo,), Qx(Wo4,...)) as a function of
l. First, we can see that the values are very large: the values start almost
at 80% for an observation window corresponding to [ = 12 hours, to reach
around 35% for [ = 1 week. After this, the values tend to decrease linearly.
The M-K distance follows almost the same behavior (Figure 16 (b)), except
that the values tend to decrease more linearly. These observations are quite
consistent with the ones obtained from Figure 15.
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Figure 16: Study of the evolution of Qr(Wp,;) with the K-S test and the M-K
distance.

In Figure 17, we present the mean and the standard deviation of Q (W)
as a function of [. We can see clearly that the values obtained for both, as
expected, tend to increase linearly with the observation window length.
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Figure 17: Mean and standard deviation of Q;(Wy ), as a function of I.

As seen before (for the file’s life durations, see Section 5), the distribu-
tions seem to evolve linearly with the observation window length. In order
to investigate this, we study the distributions normalized with respect to the
observation window length. We perform this normalization in the same way
as in the previous section, i.e. we divide the x values by [, and multiply
the y values by [. The obtained distributions are shown in Figure 18. We
can observe that the these distributions coincide, which means that they do
evolve linearly with the observation window length.

This is confirmed by the mean and the standard deviation for the nor-
malized distributions presented in Figure 19. We observe that the values
obtained for the mean and the standard deviation follow the same behavior:
at the beginning, they tend to decrease quickly, then stabilize once [ reaches
approximately 1 week. Note that the standard deviation decreases slightly
with [, which seems to indicate that the proportion of very large values (af-
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Figure 18: Distributions of Qr(Wy;) for different observation window lengths I,
normalized with respect to the time duration.

ter the bend of Figure 15) tends to decrease. It remains an open question
to see whether it would become completely stable with longer observation
windows.
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Figure 19: Mean and standard deviation (for distributions normalized with respect
to the time duration) of Qr(Ws ), as a function of I.

Finally, we can conclude that the distributions of the number of queries
per file evolve when the observation window length [ increases. However,
the study of these distributions normalized by [ shows that this evolution is
linear, which means that we are able to characterize this property.

7. Number of queries per session

We now study the distribution of the number of queries by session Gy,
in the queries dataset. We consider the same definition of sessions as in Sec-
tion 3.1, and study the number of queries the corresponding user performed
within each session.

Figure 20 presents the complementary cumulative distribution Gy (W)
for different values of I, from [ = 1 hour to [ = 10 weeks.
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Figure 20: Complementary cumulative distributions of Gy (Wy ;) for different ob-
servation windows lengths [.

In Figure 20 (a), we present these distributions in logarithmic scale on
the z-axis and a linear scale on the y-axis. We can see that the shapes
of the distributions are very similar, with a large fraction of sessions with
a small number of queries and a small fraction of sessions with more than
1000 queries. We observe that for an observation window larger than 1 day,
the distributions overlap almost completely and do not seem to evolve when
l increases.

When we compare the same distributions but with a logarithmic scale on
both axis (Figure 20 (b)), we observe that they seem visually more different.
However, we can observe that the distributions corresponding to [ = 1, 3 and
10 weeks, are similar for more than 99% of the values. They are different
only values larger than 1000, which are after the bend of Figure 20 (a).
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Figure 21: Study of the evolution of Gy (Wp,;) with the K-S test and the M-K
distance.

Figure 21 presents KS(Gr(Wo,), Gk(Wo,1,,.)) and MK(Gr(Wo,1), Ge(Wo i, ))
as a function of [. We can observe that they both follow the same behavior:
the first values are high, and decrease quickly until [ = 24 hours. After this,
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they decrease slightly and tend to stabilize after [ = 1 week. This shows that
the corresponding distributions are very close to each other which is quite
consistent with our observations from Figure 20.
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Figure 22: Mean and standard deviation of G(Wy ), as a function of I.

In Figure 22, we present the mean and the standard deviation of G}, (W)
as a function of [. We observe that the values of the mean decrease slightly at
the beginning and become stable once [ reaches 1 week, at the same time as
the K-S test and the M-K distance. This shows that an observation window
of one week is long enough to characterize the shape of this property. The
standard deviation, however, does not seem to stabilize as the observation
window length increases. This can be explained by the presence of very large
values (larger than 1000), which we have seen in Figure 20.

Finally, we can observe that this property has a very similar behavior
with the first property we have studied (users’ session length, Section 3).
We distinguish two parts in the distribution: the first one corresponds to the
large fraction of sessions with less than 1000 queries, which we are able to
characterize. The second one corresponds to the small fraction of extreme
values which are not characterized by our methodology.

8. Related Work

The fact that the observation window length impacts the observed prop-
erties of a dynamic system has mainly been acknowledged for churn, i.e. the
dynamicity of users, in P2P systems [2, 11, 12, 16, 13, 14].

Willinger et al. [17] addressed, in the context of IP flows, the question of
whether the observation window is long enough to characterize some dynamic
properties. They study the standard deviation of the flow size distribution
as a function of the measurement length, and argue that the fact that it
does not converge means that the samples may come from an underlying
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distribution with infinite variance. This in turn may make it difficult to fit
the observed properties with a model.

The create-based method |11, 12] is based on the observation that being
able to only capture accurately the length of sessions that begin and end
within the measurement window creates a bias towards short sessions. To
remove this bias, the measurement window of length 7" is divided into two
halves, and only the sessions that begin during the first half and last less
than T'/2 are considered. This leads to an unbiased estimation of sessions
with length less than 7'/2.

This methodology is complementary to the one we introduce here, which
does not formally remove the bias, but allows to make observations for the
shape of the distribution even for values larger than 7'/2. Moreover, our
observations show that if the measurement window is too short, the create-
based method will in some cases fail to provide an unbiased estimation.
Finally, this method only applies to properties for which a notion of session
can be defined, which is not always the case. For instance, it cannot be ap-
plied to the study of the number of queries for each file, which we performed
in Section 6.

Finally, the bias caused by the finiteness of the observation window is
not the only one occurring in our context. Stutzbach and Rejaie [13] studied
different aspects of peer dynamics in three different classes of P2P systems
(Gnutella, Kad and BitTorrent). They carefully analyzed the different kinds
of bias that may influence such a study, and presented a list of those they
identified, which includes problems linked to accurate peer identification.

Wang et al. [16] argue that the create-based method is biased when the
data is obtained through periodic sampling, because short events may be
missed or incorrectly observed. They propose a new sampling algorithm
called RIDE (ResIDual-based Estimator) which measures session length dis-
tributions with high accuracy and requires a low sampling frequency.

Stutzbach et al. [14] investigate the issues arising when the whole system
is not known, and informations about the nodes and links are obtained by a
sampling procedure (in this case, random walk-based methods), in the case
where the system evolves while the sampling process is under progress.

Friggeri et al. [4] studied contact networks captured with sensors able
to detect when they are close to each other. They studied the bias on the
observed contact duration caused by the fact that some sensors may fail to
detect each other at some times.
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9. Conclusion and Future Work

In this paper we introduced an empirical methodology for deciding when
the bias induced by the finiteness of the observation window in dynamic
systems becomes negligible. We illustrated its relevance by applying it to
the study of several properties in a large P2P system.

This brought several key conclusions:

e if a system is observed for a period of time that is too short, it is not
possible to obtain an accurate evaluation of its properties, which shows
the relevance of our methodology;

e in a same system, it is possible to characterize some properties, but
not others. This is the case for instance in the queries dataset, in
which it is possible to characterize accurately the session length dis-
tribution, but not the file life duration distribution. This shows that
there is no absolute relevant time scale to study a system, but that
each property must be studied independently. This is confirmed by
the fact that, for the properties that we were able to characterize, the
minimum observation window length required is not exactly the same.
Our methodology does not allow us to decide whether the properties
that we were not able to characterize are not stationary, or if longer
measurements would be required to characterize them:;

e the degree to which we are able to characterize the system’s properties
varies: in some cases we are able to characterize the whole distribution,
in others we can characterize the distribution except some extreme
values, and in others we know the global shape of the distribution, but
cannot trust its exact numerical properties. Knowing to which extent
one can trust in a given property is a very valuable insight for the study
of any system.

Finally, one key advantage of our methodology is that it can be applied
to any property in any dynamic system, and allows to know which observed
properties can be trusted and which cannot.

An interesting direction for extending this work would be to study models
for the different properties we studied. This would allow us to gain a better
intuition on the studied phenomena, and confirm formally our results. It
may also provide formal bounds for the minimum observation window length
needed to characterize a given property with a given accuracy.

Finally, we presented here a methodology for dealing with the bias in-
troduced when measuring the dynamics of a system. In many systems, and

23



in particular in the case of the internet, it is known that the measurement
procedure may introduce a structural bias even if the system does not evolve
with time. Some methods have been introduced to remedy this, see for
instance [7, 6, 14]. We believe it is therefore crucial to combine methodolo-
gies such as the one we introduced here, which deal with the dynamic bias,
to methodologies dealing with the structural bias, in order to capture the
properties of systems such as the internet, as well as their dynamics.
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