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Abstract—This paper presents a capture of the queries man-
aged by aneDonkeyserver during almost 10 weeks, leading to
the observation of almost 9 billion messages involving almost 90
million users and more than 275 million distinct files. Acquisition
and management of such data raises several challenges, which we
discuss as well as the solutions we developed. We obtain a very
rich dataset, orders of magnitude larger than previously avalaible
ones, which we provide for public use. We finally present basic
analysis of the obtained data, which already gives evidence of
non-trivial features.

I. I NTRODUCTION

Collecting live data on runningpeer-to-peernetworks is an
important task to grasp their fundamental properties and design
new protocols [1], [2], [3], [4], [5]. To this end,eDonkeyis
appealing: it is one of the currently largest and most popular
peer-to-peersystems. Moreover, as it is based on servers in
charge of file and source searches, it is possible to capture the
traffic of such a server to observe the queries it manages and
the answers it provides.

Contribution and context.
We describe here a continuous capture ofUDP/IP level

traffic on an importanteDonkeyserver during almost ten
weeks, from which we extract the application-level queries
processed by the server and the answers it gave. This leads to
the observation of 8 867 052 380eDonkeymessages, involving
89 884 526 distinctclientID and 275 461 212 distinctfileID.
We carefully anonymise and preprocess this data, in order to
release it for public use and make it easier to analyse. Its huge
size raises unusual and sometimes striking challenges (like
for instance counting the number of distinctfileID observed),
which we address.

The obtained data surpasses previously available ones re-
garding several key features: its wide time scale, the number of
observed users and files, its rigorous measurement, encoding,
and description, and/or the fact that it is released for public
use. It also has the distinctive feature of dealing with user
behaviors, rather than protocols and algorithms, or traffic
analysis, e.g. [6], [7], [8], [9], [10]. To this regard, it is
more related to previous measurement-based studies of peer
behaviors in various systems,e.g. [11], [12], [13], [14], [15],
[16], and should lead to more results of this kind.

As a passive measurement on a server, it is complementary
of passive traffic measurements in the network [9], [10], [8],
and client-side passive or active measurements [13], [14],[15],
[16] previously conducted oneDonkey. Up to our knowledge,
it is the first significant dataset oneDonkeyexchanges released

so far (though [17], [5] use similar but much smaller data),
and it is the largestpeer-to-peertrace ever released. Of course,
it also has its own limitations (for instance, it does not contain
any information on direct exchanges between clients).

II. M EASUREMENT

Since our goal was to observereal-world exchanges pro-
cessed by aneDonkeyserver, we had to capture the traffic on
an existing server (with the authorization of its administrator
and within legal limits). In this context, it was crucial to avoid
any significant overload on neither the server itself nor its
administrator. Likewise, installing dedicated material (e.g. a
DAG card) was impossible.

Moreover, it is of prime importance to ensure a high level of
anonymisation of this kind of data. This anonymisation must
be done in real-time during the capture. AsIP addresses appear
at both UDP/IP and eDonkey/application levels, this implies
that the network traffic must be decoded to application-level
traffic in real-time.

Finally, we want the released data to be as useful for the
community as possible, and so we want to format it in a way
that makes analysis easier. This plays an important role in
our encoding strategy described in Section II-D, with a strong
impact on data usability which we illustrate in Section III.
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Fig. 1. From PCAP raw traffic to XML representation

In order to reach these goals, we set up a measurement
procedure in three successive steps, as illustrated in Figure 1.
First, we capture the network traffic of aneDonkeyserver
using a dedicated program and send it to our capture machine



(Section II-B). Then this traffic is reconstructed atIP level
and decodedinto eDonkey-level traffic, i.e. queries and cor-
responding answers (Section II-C). Finally, these queriesare
anonymised and formated(Section II-D) before being stored
as XML documents.

A. The eDonkey protocol briefly

eDonkey is a semi-distributedpeer-to-peerfile exchange
system based on directory servers. These servers index files
and users, and their main role is to answer to searches for files
(based on metadata like filename, size or filetype for instance),
and searches for providers (calledsources) of given files.

Files are indexed using aMD4 hash code, thefileID, and are
characterised by at least two metadata: name and size. Sources
are identified by aclientID, which is their IP address if they
are directly reachable or a 24 bits number otherwise.

eDonkeymessages basically fit into four families: man-
agement (for instance queries asking a server for the list of
other servers it is aware of); file searches based on metadata,
and the server’s answers consisting of a list offileID with
the corresponding names, sizes and other metadata; source
searches based onfileID, and the server’s answers consisting
of a list of sources (providers) for the corresponding files;and
announcements from clients which give to the server the list
of files they provide.

An unofficial documentation of the protocol is available
[18], as well as source code of clients; we do not give more
details here and refer to this document for further information.

B. Traffic capture

Before starting any traffic capture, one has to obtain the
agreement of a server administrator. The following guarantees
made it possible to reach such an agreement: negligible impact
of the capture on the system; use of collected data for
scientific research; and high level of anonymisation (higher
than requested by law).

The ideal solution would be to patch the server source code
to add a traffic recording layer. However, as this source code
is not open-source, this was impossible. We thus had to design
a traffic capture system at theIP level, then decode this traffic
into eDonkeymessages.

The server is located in adatacenterto which we have no
access. A dedicated traffic interception hardware installation
was therefore impossible, and we had to build a software
solution. To this end, we usedlibpcap1, a standard network
traffic capture library. We sent a copy of the traffic to a capture
machine, in charge of decoding (Section II-C), anonymising
(Section II-D) and storing.

This approach leads to packet losses during the capture, due
to the duration of the capture and the network’s bandwidth.
Indeed,libpcapuses a buffer where the kernel stores captured
packets. In case of traffic peaks, this buffer may be unsufficient
and get full of packets, while some others still arrive. The
kernel cannot store these new packets in the buffer, and some

1http://tcpdump.org
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Fig. 2. Ethernet packet losses rate per second during the capture and
cumulative losses in thousands of packets (inset). Horizontal axes are labelled
by the number of weeks elapsed since the beginning of the measurement. By
its end, 250 266 packets were lost and 31 555 295 781 were captured.

are thus lost. The number of lost packets is stored in a kernel
structure, and thus we know the amount of losses that occured,
see Figure 2. These losses, although very rare, makeTCP flows
reconstruction very difficult, as packets are missing inside
flows2. In this paper, we therefore focus onUDP traffic only,
which constitutes about half of the captured traffic. At the
eDonkeylevel, the main difference betweenUDP and TCP is
that only peers connected viaTCP send the list of files they
share; we will therefore not observe this information here.

C. From UDP to eDonkey

At UDP level, our decoding software checks packets and
re-assembles the traffic. Among 14 124 818 158UDP packets
captured, 8 933 745 734 were received by theemuleserver (a
large part of the traffic consisted ofKadmeliaprotocol), 34 652
are fragments and 11 235 476 lacked theeDonkeyprotocol
header. This corresponds to 8 922 475 606 potentialeDonkey
messages, which are then decoded.

The captured traffic is generated by many poorly reliable
clients of different kinds (and versions), with their own
interpretation of the protocol. Moreover, their source codes
are intricate, and the protocol embeds complex encoding
optimisations. Finally, decoding the server traffic is much
harder than programming a client, and requires an important
work of manual decoding of the messages.

Our decoder operates in two steps: a structural validation
of messages (based on their expected length or protocol
semantics) then, if successful, an attempt at effective decod-
ing. Among the 8 922 475 606 potentialeDonkeymessages,
only 0.62% were not decoded by our system (78% of these
undecoded messages were structurally incorrect, and thus
not decodable) leading finally to 8 867 052 380 well-formed
eDonkeymessages.

2Even without packet losses,TCP conversation reconstruction is not an easy
task, as the server receives about 5000SYN packets per minute.



D. Anonymisation and formating

Anonymisation of internet traces is a subtle issue in itself
[19]. Since we want to provide the obtained data for public use,
we need a very strong anonymisation scheme:clientID, fileID,
search strings, filenames and filesizes must all be anonymised
(each with a dedicated method, described below). In addition,
timestamps are replaced by the time elapsed since the begin-
ning of the capture to further limit the desanonymisation risks.

Filesizes are stored in kilo-bytes (originally they were in
bytes); this precision reduction seems enough to protect this
information, which raises no important privacy issue.

AnonymisingclientID with a hash code is not satisfactory:
if one knows the hash function, it is easy to find the original
clientID by applying the function to the232 possibleclientID.
Shuffling strategies are not strong enough either for this
very sensitive data. We therefore chose to encodeclientID
according to their order of appearance in the captured data:
the first one is anonymised with the value 0, the second with
1 and so on. Although computationaly expensive (see below),
this technique has two advantages: it ensures a very strong
anonymisation level and it makes further use of the dataset
much easier, as anonymisedclientID are integers between 0
and N-1 (if there are N distinctclientID).

To perform this encoding, we must be able to recognise
previously encountered (and anonymised)clientID. We must
thus store throughout the capture the set ofclientID already
seen, with their anonymisation. As each message contains
at least oneclientID, an overwhelming number of searches
(several billions) must be performed in this set, as well as
millions of insertions. Classical data structures (like hashtables
or trees) are unsatisfactory in this context: they are too slow
and/or too space consuming. Instead, we used the fact that
at most232 dictinct clientID exist: we used an array of232

integers (hence of total size 16 giga-bytes), and stored the
anonymisation of eachclientID in the clientID-th cell of this
array. This has a high cost in central memory, but allowed us
to anonymiseclientID with a direct memory access operation
only, hence very efficiently.

We also chose to anonymise thefileID by their order of
appearance. Here again, the number of insertions and searches
in the corresponding set is huge. As a consequence, classical
set structures were not relevant in this case either. Moreover,
because of the size offileID (128 bits), we could not use the
same solution as forclientID.

A possible solution could be to use a sorted array containing
fileID, with their anonymisation key. Arrays are compact
structures, and when sorted a dichotomic search is very
fast. However, insertion has a prohibitive cost, due to the
reorganisation it implies to keep the array sorted.

One may avoid this problem in a simple way, asfileID are
hash codes: they are supposed to be uniformally distributedin
their coding space. As a consequence, dividing the main array
in equally-sized smaller ones, indexed by any part of thefileID,
should reduce their size uniformally and thus significantly
speed up element insertions.
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Fig. 3. Size distribution of fileID anonymisation arrays after one week
of capture. One can observe abnormally large arrays when the arrays are
indexed by the first two bytes (array 0 contains 24 024 elementsin this case);
using other bytes reduces this significantly.

In our particular situation, dividing the array size by a factor
of 65 536 by using the two first bytes to index 65 536 arrays
seems a good solution: as we encounter 88 million distinct
fileID in our capture, each array length should be around 1500;
sorted insertion in such arrays is reasonable.

However, implementing this strategy led to surprising re-
sults: anonymisation arrays 0 and 256 had very large sizes,
see Figure 3. This shows that, in practice, a majority of
fileID start with 0 or 256, and thus reveals the massive
presence of forgedfileID [20]. They induce the unbalanced
sizes of our anonymisation arrays, which strongly hampers
our computations.

We solved this problem by selecting two different bytes in
the fileID to index our 65 536 arrays. Figure 3 shows that this
approach does not perfectly remove the heterogeneity of array
sizes, but it was sufficient for our application.

Search strings, filenames, and server descriptions are sim-
ilarly encoded by their order of appearance. We re-used the
fileID anonymisation scheme by first encoding these strings
as MD5 hashes, and then replacing these hash codes by the
wanted anonymisation.

Finally, the processing method we have described is rather
space consuming as we fully used abi-dual Opteronserver
loaded with 24Gb of RAM to compute the stream, but it is
able to decodeUDP traffic in real-time, while anonymizing,
which is crucial in our context.

E. Final dataset

The final dataset we obtain consists in a series of
8 867 052 380eDonkeymessages (queries from clients and
answers to these queries from the server) inXML format3. It
contains very rich information on users at 89 884 526 distinct

3We choseXML as output format because it leads to easy-to-read and rig-
orously specified text files, and, once compressed, does not have a prohibitive
space cost.



IP addresses dealing with 275 461 212 distinctfileID, while
preserving the privacy of users.

This dataset is publicly available with its formal specifica-
tion4.

III. B ASIC ANALYSIS

We present in this section a few basic analysis. Notice
however that these statistics are subject to measurement bias
[21], and only reflect the content of our data; more careful
analysis should be conducted to derive accurate conclusions
on the underlying objects.

Their purpose is to highlight the fact that the grade of our
anonymisation process does not prevents analysis as stated
also in [14] or [5], and the richness of our dataset. As for
instance, studies of community structures and evolution or
content diffusion may be conducted as well. That dataset
could also be used as a source of statistical insights for in-
developmentpeer-to-peerprotocols.

Notice that our formating greatly simplifies such analysis:
having clientID and fileID represented by contiguous interg-
ers starting from 0 is central in making most computations
tractable. Easier anonymisation schemes, like hashing of the
fileIDs and clientIDs, would have produced a slightly less
compact dataset, and, more importantly, would make analysis
much harder.

A. File size
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Fig. 4. File size distribution,i.e. for each encountered file size (horizontal
axis) the number of files having this size.

We display in Figure 4 the distribution of the size of
exchanged files, obtained from the answers of the server to
some queries which indicate the size of found files. One
observes many small files (probably music files), and clear
peaks at 700 MB (typical size of a CD-ROM ISO images or
SVCD movie), and at fractions (1/2, 1/3, 1/4) or multiples (2
×) of this value. The peak at 1 GB may indicate that users
split very large files (DVD images for instance) into 1 GB
pieces.

This plot reveals the fact that, even though in principle files
exchanged in P2P systems may have any size, their actual sizes
are strongly related to the space capacity of classical exchange
and storage supports.

4http://www-rp.lip6.fr/∼latapy/tenweeks/

B. File popularity

We define thepopularity of a file (identified by itsfileID)
as the number of distinct peers asking or providing this file
at any time in our dataset (we do not consider files which are
never provided). The distribution of the11 760 816 popularities
obtained this way (not represented here) is perfectly well fitted
by a power-law on three decades, and has a heavy tail. It means
that the popularities are very hererogeneous: although a very
large number (more than5 millions) of files have a popularity
lower than or equal to10, some (46) have a popularity larger
than50 000.

Let us first focus on these extremely popular files, the46

ones with popularity larger than50 000. We plot the evolution
of their popularity during time in Figure 5. These plots clearly
show that the popularity of these files evolves smoothly as
soon as the file is first seen, and does not stop to grow.
However, some files appear rather late during our measurement
(up to more than three weeks after its beginning). This shows
that new popular files appeared after the beginning of the
measurement. Therefore, our dataset may be used to study how
a new file becomes popular, which is a fundamental question.
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Fig. 5. Time-evolution of the popularity of some of the46 extremely popular
files: red solid lines for the five most popular; blue dashed lines for the five
least popular.

Figure 5 also shows that very popular files are popular for a
rather long time. As a consequence, and even though we may
observe the appearance of very popular files in our dataset,
we cannot observe the disappearence of such files.

In order to explore this, we selected the most popular
files which we encountered neither during the first week of
measurement nor during the last one. Only26 such files have
a popularity larger than2 000, much lower than the maximal.
As expected, the time evolution of their popularity strongly
differs from the one of the extremely popular files, see Figure 6
for an illustration. In these cases, the appearance of the file
is followed by a relatively short period during which many
peers download it, and then the file is never encountered again.
Notice that this does not mean that no user is interested in this
file anymore, but maybe that no provider is present, which may
be investigated further using our dataset.
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Fig. 6. Time-evolution of the popularity of some typical files among the
most popular ones for which we can observe appearance and disappearance.

IV. CONCLUSION

This paper presents a capture of the queries managed by
a live eDonkeyserver at a scale significantly larger than
before, both in terms of duration, number of peers observed,
and number of files observed. This dataset is available for
public use with its formal specification5 in an easy-to-use and
rigorous format which significantly reduces the computational
cost of its analysis. We present a few simple analysis which
give evidences of the fact that our dataset contains much
information on various phenomena of interest. It may also be
used for simulation (trace replay) and modeling purposes.

This work may be extended by conducting measurements
of TCP eDonkey traffic, and more generally by measuring
the eDonkeyactivity using complementary methods (active
measurements from clients, for instance). The measurement
duration may also be extended even more, and likewise the
traffic losses may be reduced.

From an analysis point of view, this work opens many di-
rections for further research. For instance, it makes it possible
to study and model user behaviors, communities of interests,
how files spread among users, etc. Most of these directions
were out of reach with previously available data, and they are
crucial from both fundamental and applied points of view.
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