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Abstract—This paper presents a capture of the queries man- so far (though [17], [5] use similar but much smaller data),
aged by aneDonkeyserver during almost 10 weeks, leading to and it is the largegpeer-to-peetrace ever released. Of course,
the observation of almost 9 billion messages involving almost 90 it also has its own limitations (for instance, it does notteim

million users and more than 275 million distinct files. Acquisition inf Hi direct h bet lient
and management of such data raises several challenges, which weNY Information on direct exchanges between clien s)-

o!lscuss as well as the soluyons we developed. We obtain a very Il. MEASUREMENT
rich dataset, orders of magnitude larger than previously avalaible )
ones, which we provide for public use. We finally present basic ~ Since our goal was to observeal-world exchanges pro-

analys‘is. of the obtained data, which already gives evidence of cessed by aeDonkeyserver, we had to capture the traffic on
non-trivial features. an existing server (with the authorization of its admiraisir
I. INTRODUCTION and within legal limits). In this context, it was crucial tecd
any significant overload on neither the server itself nor its

Collecting live data on runningeer-to-peenetworks is an administrator. Likewise, installing dedicated materialg( a

important task to grasp their fundamental properties astyde DAG card) was impossible.
new protocols [1], [2], [3], [4], [5]. To this endeDonkeyis Moreover, it is of prime importance to ensure a high level of

appealing: it is one of the currently !ar.gest andd most IOOpmﬁnonymisation of this kind of data. This anonymisation must
peer-to-peersystems. Moreover, as it is based on Servers i, e in real-time during the capture. iksaddresses appear
charge of file and source searches, it is possible to captare Lt both upp/iP and eDonkeyfapplication levels, this implies

traffic of such a server to observe the queries it manages El‘Hgt the network traffic must be decoded to applicationtleve
the answers it provides. traffic in real-time

Contribution and context. Finally, we want the released data to be as useful for the
We describe here a continuous capture ugfP/ip level community as possible, and so we want to format it in a way

traffic on an importanteDonkeyserver during almost ten that makes analysis easier. This plays an important role in

weeks, from which we extract the application-level querie@Jr encoding strategy described in Section II-D, with arggro

processed by the server and the answers it gave. This leadénpact on data usability which we illustrate in Section III.

the observation of 8 867 052 3&Donkeymessages, involving

89884526 distinctclientlD and 275461212 distindilelD. eDonkey server ||Capture machine

We carefully anonymise and preprocess this data, in order to

release it for public use and make it easier to analyse. tie hu | PCAP capture |

size raises unusual and sometimes striking challenges (lik

PCAP decoding ]

for instance counting the number of distirfitelD observed), PCAP flow UDP traffc

which we address. eDonkey dialogs
The obtained data surpasses previously available ones re- Section II.B reconstruction

garding several key features: its wide time scale, the numibe _

observed users and files, its rigorous measurement, emgodin  Section II.C/ eDonkey traffic

and description, and/or the fact that it is released for ipubl ||[Dialogs anonymisation ]

use. It also has the distinctive feature of dealing with user ! and formattin

behaviors, rather than protocols and algorithmg, or traffic Sectlonll.D/ ¢ J

analysis, e.g. [6], [7], [8], [9], [10]. To this regard, it is
more related to previous measurement-based studies of peer
behaviors in various systems,g.[11], [12], [13], [14], [15],
[16], and should lead to more results of this kind. Fig. 1. From pcApraw traffic to XML representation

As a passive measurement on a server, it is complementary
of passive traffic measurements in the network [9], [10], [8] In order to reach these goals, we set up a measurement
and client-side passive or active measurements [13], [18], procedure in three successive steps, as illustrated irrd-iju
[16] previously conducted oaDonkey Up to our knowledge, First, we capture the network traffic of aneDonkeyserver
it is the first significant dataset @Donkeyexchanges releasedusing a dedicated program and send it to our capture machine

[XML encoding and storage ]




(Section 11-B). Then this traffic is reconstructed &t level 1 -

and decodedinto eDonkeylevel traffic, i.e. queries and cor- 09 t 250 L 4
responding answers (Section II-C). Finally, these quesies 0s | 200 - =1 ]
anonymised and formate@ection 11-D) before being stored Bsor 1
0.7 100 - — 1 4
as XML documents. 50 - 1
06 r 0 -
A. The eDonkey protocol briefly 05 | i
eDonkeyis a semi-distributedbeer-to-peerfile exchange 04 i

system based on directory servers. These servers index files
and users, and their main role is to answer to searches fer file
(based on metadata like filename, size or filetype for inganc
and searches for providers (callsdurce$ of given files. o1r ‘
Files are indexed usingnap4 hash code, thilelD, and are o bl e el : —
. . 01 02 03 04 05 06 07 08 09 10
characterised by at least two metadata: hame and size.esourc
are Iqentlfled by alientID, WhICh_ Is theirip addres§ if they Fig. 2.  Ethernet packet losses rate per second during theireapnd
are directly reachable or a 24 bits number otherwise. cumulative losses in thousands of packets (inset). Hort@xes are labelled
eDonkeymessages basically fit into four families: manby the number of weeks elapsed since the beginning of the nezasunt. By
agement (for instance queries asking a server for the list '§fe"% 250266 packets were lost and 31555295781 wereredptu
other servers it is aware of); file searches based on metadata
and the server’'s answers consisting of a listfitdlD with
the corresponding names, sizes and other metadata; so
searches based ditelD, and the server’s answers consistin .
of a list of sources (providers) for the corresponding fibas ee Figure 2. These losses, although very rare, makélows

announcements from clients which give to the server the I%qconzstructlc')n very difficult, as packets are missing lesid
of files they provide. ows*“. In this paper, we therefore focus amp traffic only,

An unofficial documentation of the protocol is availabIéNhICh constitutes abqut half of the captured traffic. A.‘t the
onkeylevel, the main difference betwearpr and TCP is

[18], as well as source code of clients; we do not give moft

details here and refer to this document for further infoforat ot only peers connected viecp send Fhe_ list of ‘f"es they
share; we will therefore not observe this information here.

a ethus lost. The number of lost packets is stored in a kernel
tructure, and thus we know the amount of losses that occured

B. Traffic capture

Before starting any traffic capture, one has to obtain th% From UDP to eDonkey

agreement of a server administrator. The following guaesit At UDP level, our decoding software checks packets and

made it possible to reach such an agreement: negligibledimpee-assembles the traffic. Among 14 124 818 158 packets

of the capture on the system; use of collected data foaptured, 8933745734 were received by émeuleserver (a

scientific research; and high level of anonymisation (highéarge part of the traffic consisted Kadmeliaprotocol), 34 652

than requested by law). are fragments and 11235476 lacked #@onkeyprotocol
The ideal solution would be to patch the server source coddeader. This corresponds to 8922475606 poteetizdnkey

to add a traffic recording layer. However, as this source codessages, which are then decoded.

is notopen-source, this was impossible. We thus had to desigriThe captured traffic is generated by many poorly reliable

a traffic capture system at thie level, then decode this traffic clients of different kinds (and versions), with their own

into eDonkeymessages. interpretation of the protocol. Moreover, their source eod
The server is located in datacenterto which we have no are intricate, and the protocol embeds complex encoding

access. A dedicated traffic interception hardware ingtafia optimisations. Finally, decoding the server traffic is much

was therefore impossible, and we had to build a softwaharder than programming a client, and requires an important

solution. To this end, we usdibpcap?, a standard network work of manual decoding of the messages.

traffic capture library. We sent a copy of the traffic to a cegtu  Our decoder operates in two steps: a structural validation

machine, in charge of decoding (Section 1I-C), anonymisingf messages (based on their expected length or protocol

(Section II-D) and storing. semantics) then, if successful, an attempt at effectivediec
This approach leads to packet losses during the capture, éhigg Among the 8922475606 potentiaDonkeymessages,

to the duration of the capture and the network’s bandwidtbnly 0.62% were not decoded by our system (78% of these

Indeed libpcap uses a buffer where the kernel stores capturemthdecoded messages were structurally incorrect, and thus

packets. In case of traffic peaks, this buffer may be unsefitci not decodable) leading finally to 8867 052380 well-formed

and get full of packets, while some others still arrive. TheDonkeymessages.

kernel cannot store these new packets in the buffer, and some

2Even without packet lossescp conversation reconstruction is not an easy
http://itcpdump.org task, as the server receives about 580® packets per minute.



T
two first bytes

D. Anonymisation and formating
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Anonymisation of internet traces is a subtle issue in itself
[19]. Since we want to provide the obtained data for publig,us  ©
we need a very strong anonymisation schedfientlD, fileID, S
search strings, filenames and filesizes must all be anongimise s®[
(each with a dedicated method, described below). In additio ot
timestamps are replaced by the time elapsed since the begin“—c’B
ning of the capture to further limit the desanonymisaticksi I

Filesizes are stored in kilo-bytes (originally they were in
bytes); this precision reduction seems enough to protést th
information, which raises no important privacy issue.

AnonymisingclientID with a hash code is not satisfactory: (| ‘ ‘ ]
if one knows the hash function, it is easy to find the original 300 1000 10000 20000
clientID by applying the function to the3? possibleclientlD.

Shuffling strategies are not strong enough either for thlfg 3. Size distribution of filelID anonymisation arrays after one week

" . of capture. One can observe abnormally large arrays when the arrays are
very sensitive data. We therefore chose to encokientiD indexed by the first two bytes (array O contains 24 024 elemiarttss case);
according to their order of appearance in the captured daising other bytes reduces this significantly.
the first one is anonymised with the value 0, the second with
1 and so on. Although computationaly expensive (see below),
this technique has two advantages: it ensures a very strongn our particular situation, dividing the array size by atéac
anonymisation level and it makes further use of the datasdt65536 by using the two first bytes to index 65536 arrays
much easier, as anonymisetlent|D are integers between 0seems a good solution: as we encounter 88 million distinct
and N-1 (if there are N distinatlientID). filelD in our capture, each array length should be around 1500;

To perform this encoding, we must be able to recogniserted insertion in such arrays is reasonable.
previously encountered (and anonymisetigntID. We must ~ However, implementing this strategy led to surprising re-
thus store throughout the capture the setlEntID already sults: anonymisation arrays 0 and 256 had very large sizes,
seen, with their anonymisation. As each message contage® Figure 3. This shows that, in practice, a majority of
at least oneclientID, an overwhelming number of searche§ilelD start with 0 or 256, and thus reveals the massive
(several billions) must be performed in this set, as well ggesence of forgedilelD [20]. They induce the unbalanced
millions of insertions. Classical data structures (likslitables sizes of our anonymisation arrays, which strongly hampers
or trees) are unsatisfactory in this context: they are tow sl our computations.
and/or too space consuming. Instead, we used the fact thaiVe solved this problem by selecting two different bytes in
at most232 dictinct clientlD exist: we used an array &2 thefilelD to index our 65536 arrays. Figure 3 shows that this
integers (hence of total size 16 giga-bytes), and stored tagproach does not perfectly remove the heterogeneity ay arr
anonymisation of eachlientID in the clientID-th cell of this sizes, but it was sufficient for our application.
array. This has a high cost in central memory, but allowed usSearch strings, filenames, and server descriptions are sim-
to anonymiseclient|D with a direct memory access operationlarly encoded by their order of appearance. We re-used the
only, hence very efficiently. fileID anonymisation scheme by first encoding these strings

We also chose to anonymise tfieelD by their order of as MD5 hashes, and then replacing these hash codes by the
appearance. Here again, the number of insertions and ssaretanted anonymisation.
in the corresponding set is huge. As a consequence, classic#inally, the processing method we have described is rather
set structures were not relevant in this case either. M@gowspace consuming as we fully usedoadual Opteronserver
because of the size dilelD (128 bits), we could not use theloaded with 24Gb of RAM to compute the stream, but it is
same solution as fatlientlD. able to decodeupp traffic in real-time, while anonymizing,

A possible solution could be to use a sorted array containimgnich is crucial in our context.
filelD, with their anonymisation key. Arrays are compact
structures, and when sorted a dichotomic search is veary Final dataset
fast. However, insertion has a prohibitive cost, due to the
reorganisation it implies to keep the array sorted.
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The final dataset we obtain consists in a series of
8867 052 380eDonkeymessages (queries from clients and

One may avoid this problem in a simple way,fdsID are h ies f h i f 3
hash codes: they are supposed to be uniformally distril:iuted"’msvw.ers ot €se queres from the serverin. format®. !t .
' contains very rich information on users at 89 884 526 distinc

their coding space. As a consequence, dividing the maily arra
in equally-sized smaller ones, indexed by any part ofithéD, 3 , _
We chosexML as output format because it leads to easy-to-read and rig-

should reduce the!r Siz? uniformally and thus Signiﬁcamlé/rously specified text files, and, once compressed, does metehprohibitive
speed up element insertions. space cost.



IP addresses dealing with 275461212 distifidlD, while B. File popularity

preserving the privacy of users. o ~ We define thepopularity of a file (identified by itsfilelD)

_ TQ'S dataset is publicly available with its formal specificaas the number of distinct peers asking or providing this file

tion™. at any time in our dataset (we do not consider files which are
[1l. BASIC ANALYSIS never provided). The distribution of tHé 760 816 popularities

We present in this section a few basic analysis. Noti@tained this way (not represented here) is perfectly wieddi
however that these statistics are subject to measuremesit I & Power-law on three decades, and has a heavy tail. It means
[21], and only reflect the content of our data; more caref{ffat the popularities are very hererogeneous: althoughna ve
analysis should be conducted to derive accurate conclusidifde number (more thahmillions) of files have a popularity
on the underlying objects. lower than or equal td0, some {6) have a popularity larger

Their purpose is to highlight the fact that the grade of ofan 50 000. _
anonymisation process does not prevents analysis as statdeft US first focus on these extremely popular files, 4te
also in [14] or [5], and the richness of our dataset. As f@nes with popularity larger thasi 000. We plot the evolution
instance, studies of community structures and evolution 8f their popularity during time in Figure 5. These plots clga
content diffusion may be conducted as well. That datas¥toW that the popularity of these files evolves smoothly as

could also be used as a source of statistical insights for #0N as the file is first seen, and does not stop to grow.
developmenpeer-to-peerprotocols. However, some files appear rather late during our measutemen

Notice that our formating greatly simplifies such analysi§UP to more than three weeks after its beginning). This shows
having clientD and filelD represented by contiguous intergfhat new popular files appeared after the beginning of the
ers starting from 0 is central in making most computatiorf§éasurement. Therefore, our dataset may be used to study how

tractable. Easier anonymisation schemes, like hashingeof & New file becomes popular, which is a fundamental question.
filelIDs and clientIDs, would have produced a slightly less

compact dataset, and, more importantly, would make amalysi """
much harder. 90000
A. File size 80000
70000
2.5e+09 e - — ————rr _ 0000
+ &
i = 50000
26+00- small files | :
. 40000
1.5e+09F 30000
L. 700 MB
350 MB 20000 )
le+091 230 MB \ 1GB . 10000 . ]
0 & (e | 1 | | | | | |
5e+08[ Y MB\ I ﬁ"l GB | o0 02 03 04 05 06 07 08 09 10 Il
Weeks
4+++ \ ) ¥ 4 . /
ok . . ... \% Fig. 5. Time-evolution of the popularity of some of the extremely popular
1 10 100 1000 100C files: red solid lines for the five most popular; blue dasheddifor the five

least popular.
Fig. 4. File size distributioni.e. for each encountered file size (horizontal

axis) the number of files having this size. Figure 5 also shows that very popular files are popular for a
O%rather long time. As a consequence, and even though we may

We display in Figure 4 the distribution of the size observe the appearance of very popular files in our dataset,

exchanged files, obtained from the answers of the server tQ . !
we cannot observe the disappearence of such files.

some queries which indicate the size of found files. One

observes many small files (probably music files), and cle rIn order to explore this, we selected the most popular
v y : P y Music 1iies), fifes which we encountered neither during the first week of

peaks at 700 MB (typical size of a CD-ROM ISO images ot

X . . easurement nor during the last one. O2fysuch files have
SVCD movik, and at fractions (1/2, 1/3, 1/4) or multiples (zr;popularity larger thaR 000, much lower than the maximal.

x) of this value. The peak at 1 GB may indicate that user,
spellée\;ery large files (DVD images for instance) into 1 G differs from the one of the extremely popular files, see Fadur
PIECces. S . for an illustration. In these cases, the appearance of the fil
This plot reveals the fact that, even though in principlesfile . : X X
. ? . is followed by a relatively short period during which many
exchanged in P2P systems may have any size, their actual size

are stronaly related to the space capacity of classical peers download it, and then the file is never encounteree agai
gl P pacity g Notice that this does not mean that no user is interestedsn th
and storage supports.

file anymore, but maybe that no provider is present, which may
“http://www-rp.lip6.fr/-latapy/tenweeks/ be investigated further using our dataset.

s expected, the time evolution of their popularity strgngl
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Fig. 6. Time-evolution of the popularity of some typical filemieng the
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IV. CONCLUSION

This paper presents a capture of the queries managedfy
a live eDonkeyserver at a scale significantly larger than
before, both in terms of duration, number of peers observétf!
and number of files observed. This dataset is available f@g
public use with its formal specificationin an easy-to-use and
rigorous format which significantly reduces the computsdio g]
cost of its analysis. We present a few simple analysis whigh
give evidences of the fact that our dataset contains muigh]
information on various phenomena of interest. It may also %]
used for simulation (trace replay) and modeling purposes.

This work may be extended by conducting measurements
of Tcp eDonkeytraffic, and more generally by measurinle]
the eDonkeyactivity using complementary methods (active
measurements from clients, for instance). The measurement
duration may also be extended even more, and likewise the
traffic losses may be reduced.

From an analysis point of view, this work opens many di-
rections for further research. For instance, it makes isjnds
to study and model user behaviors, communities of interests
how files spread among users, etc. Most of these directions
were out of reach with previously available data, and they ar
crucial from both fundamental and applied points of view.
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