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Abstract. Most real networks often evolve through time: changes oblmgy can
occur if some nodes and/or edges appear and/or disappdaheatypes or weights
of nodes and edges can also change even if the topology stdigs Mobile de-
vices with wireless capabilities (mobile phones, laptais,) are a typical exam-
ple of evolving networks where nodes or users are spreackietizironment and
connections between users can only occur if they are near @her. This who-
is-near-whom network evolves every time users move and aamuation services
(such as the spread of any information) will deeply rely oa thobility and on
the characteristics of the underlying network. This papesents some recent re-
sults concerning the characterization of the dynamics ofglex networks through
three different angles: evolution of some parameters opsrats of the network,
parameters describing the evolution itself, and intermedapproaches consisting
in the study of specific phenomena or users of interest thiradinge.
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Introduction

Complex networks play an important role in several sciemtifintexts: computer sci-
ence, social and interaction networks or epidemiology.idaipexamples of such net-
works are the Internet, web graphs, E-mail, phone calls,i&®orks, etc. In these net-
works, links between entities generally represent some kind of intenacStudied as a
whole, these networks share some non trivial propertiessante problems span over a
large variety of networks. For instance, the spreading fufrimation is studied in com-
puter science but also in epidemiology and the detectioneakd subnetworks (com-
munities) is also a problem having strong implications imsndomains. Last decade,
this domain has proposed a large set of tools which can be arseshy complex net-
work to get a deep insight on its properties and to comparedttier networks (see for
instance [1] for a review of parameters).

However, one fundamental property has until recently beewstddied. Complex
networks evolve: new nodes and edges appear while some ekl disappear. These
evolutions are often playing a key role in all the scientiftarthins cited above: people
get new acquaintances, web pages are created or modifiedaily &akis, machines are
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added or removed on the Internet, etc. If some studies areated to the dynamics of
complex networks [2,3,4] they are still too few. It appearsctal to better understand the
evolution of these networks first to get knowledge but aldogt@ble to generate random
evolutive networks which can be used for simulation purgose

In this paper, we detail three distinct approaches whictcareently used to study
complex networks and we explicit these approaches usinigalypomplex networks.
First, it is possible to describe the evolution of a netwalagequence of static networks
and since there exist many parameters to describe acgueagatic network, one can
study the evolution of the network through the evolutionluége parameters (Sec. 1).
Second, one can study the evolution itself and define pasasiet capture it, such as the
rate of appearance or disappearance of nodes and edge2)SHurd, an intermediate
approach can be used which consists in studying specificquhena or users of interest
through time (Sec. 3). For all these approaches methods @rayph theory, statistical
physics, data mining and random processes can be used amthyncases new tools and
parameters have to be introduced.

1. Evolution of static properties

The most natural way to describe the dynamics of a complexar&tis to study the
evolution of static properties through time. Static netvgohave been widely studied
and a lot a simple parameters are available to describe sorietas a whole (humber
of nodes and edges, number of triangles, specific subgrégtgh of paths, connected
components, etc.) or to describe specific nodes (humberighbers, number of edges
between the neighbors, clustering coefficient [5], etc.).

Therefore it is possible to consider an evolving network disn@ sequencés; of
networks (snapshots) and to study each of these indepéydenis yields for each pa-
rameter a time series which can be studied using signal psawgnotions (see Fig. 1).
Properties such as the mean, standard deviation and o#tiistisal properties can be
computed on these time series.
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Figure 1. Number of queries per minute during 50 hours on a small siZé¢ BP@onkey server. The three

curves correspond to different types of queries. Day/néffécts can be observed as well as the start of the
measurement during which a lot of new peers connect whiddg/&n increasing number of queries.

A more complex property is the autocorrelation function farquantity X:
Cx (1) =< X(t +7)X(t) > — (< X(t) >;)°, where< - >, is the mean over time.



From this, we can extract@orrelation time[6], defined as the first time were the func-
tion C'x (7) equals zero (it always happens due to the summation rule pirea C'x).
The correlation time quantifies the “memory” of the propethe longer it is, the greater
are the persistence of fluctuations in the data.

Note that very often data are not given as a sequence of spigpbht rather
as a sequence of events: email networks for instance areedelfiy a set of triples
(from,to,date), the date being the moment when the mail was. ¢ one considers a
shapshot every second, since it is likely that no two evdmts €mails sent exactly at
the same time) happen simultaneously then the observedretare very small. On
the contrary, if the aggregation is done on a larger scaler{eminute, hour or day)
more events are to be observed on each snapshot but the tdrapter of these events
is going to be lost in each snapshot (mail replies or forwdodénstance). In complex
networks, different time scales can be used depending opatemeter or phenomenon
observed. For instance when considering a typical P2Praystee can study the instan-
taneous throughput (one second or less), connection darattia peer (minutes to days),
download duration of a file (minutes to weeks) or even the tiimaduring which a file
is available on the network (up to years), etc.

2. Definition of dynamic properties

Considering the evolution as a sequence of snapshots ificiemfand simple approach
in many cases but some properties cannot be directly olsbénvihis framework. For
instance it is natural to look at the duration of contactsam-contacts between individ-
uals in a network [7] or to study the evolution of communitiEer these simple exam-
ples, one has to consider the evolution of the network fromtane step to the next, or
the whole evolution. Hereafter we detail the case of thewgian of communities in a
network.

Communities are defined as dense subgraphs with few edgeedrethem and can
be found in many complex networks. The identification of saghgraphs is important
in many contexts since such communities can corresponaitgpgrof friends or people
with similar interests, web pages with a similar contert, Btoreover studies show that
information (rumors for instance) spread more rapidlydestommunities than between
communities.

Many algorithms are available to find communities autonadlijcon graphs, how-
ever theses methods are often time expensive and veryigsengismall modifications of
the topology: the addition of one edge can have strong iragtins on the global com-
munity structure. Therefore it is likely that applying teesethods will produce com-
pletely different decompositions for each snapshot. OnEageh has been used in [4]
using a non classical definition of communities which allde$ollow the evolution of
community using a simple set of rules (birth, death, merg#t, growth and contrac-
tion). Similar ideas are presented in [8] by the identificatof dense subgraphs in each
snapshot, the subgraphs begin merged afterwards. In P§uthors present an approach
not specifically dedicated to the identification of commigsibut to the clustering prob-
lem in general which allows to cluster data in a timely fashidnile keeping a good clus-
tering and no strong variations from one snapshot to the. iggroaches using tools
from data-mining are also available, which allow to compdease sets of nodes with
many interactions for a long period of time [10,11] (see Rig.



Figure 2. Time ordered trajectories of individual (square) in groggcles) in a contact network. Groups are
dense connected subgraphs which appear frequently in theérgy network.

The results obtained using any community detection algarior evolving network
give some information on the communities (lifetime, rateapparition and disappear-
ance, probability of merging and splitting, etc.) [11]. T$teidy of the evolution of the
network can therefore be done at a different scale whichtiomal and not global.

3. Study of specific users and phenomenon

Another approach which can be used to study evolving netsvigko study specific
nodes or groups of nodes of particular interest (for instacmmmunities). In many con-
texts algorithms and protocols are designed for averags asel it is important to know
the number of users who are significantly deviant from therage and how they behave
in order to optimize protocols. For instance in most P2Pesyst the load for a peer is
somehow proportional to the number of files shared, usersiwiiare many files can
therefore become bottlenecks if they are queried too ofteRig. 3 we show results ob-
tained on a typical P2P network when trying to identify therssvho share many files.
These users are more likely to be queried very often by otber

3.1. Transmission of information

A typical phenomenon on complex networks is the diffusiochsas for viruses in epi-

demiology, routing in computer networks, innovation, dfaecent studies have taken
into account the real dynamics [12,13], for most of them trecpss of transmission is
living on a static graph. In the static case the main issuesafind networks parame-
ters which explain the persistence of viruses within a gigeph. It has been shown for
instance that there is a strong relation between the lagigetvalue of the adjacency
matrix of the network and the epidemic threshold [14].

Dynamics are also central in new communication serviceshvaie relying on mo-
bile users spread in the environment. The routing of infdromain such a context de-
pends on the connectivity between nodes and the mobilityesfe nodes. Understanding
the characteristics of these networks (called Delay Tokekietworks) is therefore cru-
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Figure 3. Left: joint distribution of the number of files offered by agrgin-degree) versus the number of files
he looks for (out-degree) in a P2P system. Peers offeringyrfilas and peers who do not offer any file but
look for many (free-riders) can be easily identified andtartstudied. Right: evolution of the number of files
requested for the three peers offering the more files (theethightmost on the left figure). Aftéi3 hours some
of their files still have not been requested.

cial to propose protocols suitable for this context. Thepdast ways to transmit data in
this context are the opportunistic forwarding algorithrig fvhen a node needs to send
some data to a destination, it uses its contacts to relaydteetd the destination. Two
naive algorithms belong to this class, the first one consistsiting to be connected to
the destination to send the data directly, the second dsrisiforwarding the data to all
the neighbors which in turn are going to pass it to their neagh. This is going to flood
the network with the data which eventually should arrivehatdestination (see Fig. 4).

Figure 4. Naive instantaneous flooding in a mobile network, where rbdetrying to send a message to all
other nodes at tim&15000. Time on the edges represents the earliest time for the messde transmitted to
the group of nodes belowg. the time when an edge is created between a node on top adeé atthe bottom.
Note that two users36 and37) cannot be reached. The data used for the flooding simulatierdescribed
in [11]

4. Conclusion
We presented here three different approaches which candzbtasstudy an evolving
network:

e the evolving network can be considered as a sequence oftertand each of
these snapshots can be studied as a static network;



e properties can be defined on the evolution itself, for instathe duration of con-
tacts in a network or the evolution of communities througfeti;

e finally, specific users or phenomena can be studied, the nibwiews being the
diffusion of information in an evolving network.

Many studies have been focused on static networks, theréfierfirst approach is the
more developed, however the definition of proper time sdalasunsolved problem and
there is no warranty that such time scales can be defined iummatic way given
an evolving network. For both other approaches, much wosktbde done in order to
define new relevant parameters to describe the evolutiorezssply as possible.
Finally, using all the parameters obtained with the presiapproaches would allow
the introduction of evolutionary models for dynamic comgpieetworks. Such models
could be used in formal contexts and for simulation purpd3eining random models is
not an easy task and even for static networks some simplengdess cannot be captured
in a satisfactory way. A few models have already been inttedi(see for instance [15])
which are modifying a given network by the addition of noded adges, however the
aim is in general not to generate an evolving network but en&vally obtain a network
with a given set of static properties. Much therefore rera&inbe done in this direction.
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