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Abstract. Most real networks often evolve through time: changes of topology can
occur if some nodes and/or edges appear and/or disappear, and the types or weights
of nodes and edges can also change even if the topology stays static. Mobile de-
vices with wireless capabilities (mobile phones, laptops,etc.) are a typical exam-
ple of evolving networks where nodes or users are spread in the environment and
connections between users can only occur if they are near each other. This who-
is-near-whom network evolves every time users move and communication services
(such as the spread of any information) will deeply rely on the mobility and on
the characteristics of the underlying network. This paper presents some recent re-
sults concerning the characterization of the dynamics of complex networks through
three different angles: evolution of some parameters on snapshots of the network,
parameters describing the evolution itself, and intermediate approaches consisting
in the study of specific phenomena or users of interest through time.
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Introduction

Complex networks play an important role in several scientific contexts: computer sci-
ence, social and interaction networks or epidemiology. Typical examples of such net-
works are the Internet, web graphs, E-mail, phone calls, P2Pnetworks, etc. In these net-
works, links between entities generally represent some kind of interaction. Studied as a
whole, these networks share some non trivial properties andsome problems span over a
large variety of networks. For instance, the spreading of information is studied in com-
puter science but also in epidemiology and the detection of dense subnetworks (com-
munities) is also a problem having strong implications in many domains. Last decade,
this domain has proposed a large set of tools which can be usedon any complex net-
work to get a deep insight on its properties and to compare it to other networks (see for
instance [1] for a review of parameters).

However, one fundamental property has until recently be understudied. Complex
networks evolve: new nodes and edges appear while some old ones disappear. These
evolutions are often playing a key role in all the scientific domains cited above: people
get new acquaintances, web pages are created or modified on a daily basis, machines are
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added or removed on the Internet, etc. If some studies are dedicated to the dynamics of
complex networks [2,3,4] they are still too few. It appears crucial to better understand the
evolution of these networks first to get knowledge but also tobe able to generate random
evolutive networks which can be used for simulation purposes.

In this paper, we detail three distinct approaches which arecurrently used to study
complex networks and we explicit these approaches using typical complex networks.
First, it is possible to describe the evolution of a network as a sequence of static networks
and since there exist many parameters to describe accurately a static network, one can
study the evolution of the network through the evolution of these parameters (Sec. 1).
Second, one can study the evolution itself and define parameters to capture it, such as the
rate of appearance or disappearance of nodes and edges (Sec.2). Third, an intermediate
approach can be used which consists in studying specific phenomena or users of interest
through time (Sec. 3). For all these approaches methods fromgraph theory, statistical
physics, data mining and random processes can be used and in many cases new tools and
parameters have to be introduced.

1. Evolution of static properties

The most natural way to describe the dynamics of a complex network is to study the
evolution of static properties through time. Static networks have been widely studied
and a lot a simple parameters are available to describe a network as a whole (number
of nodes and edges, number of triangles, specific subgraphs,length of paths, connected
components, etc.) or to describe specific nodes (number of neighbors, number of edges
between the neighbors, clustering coefficient [5], etc.).

Therefore it is possible to consider an evolving network as atime sequenceGt of
networks (snapshots) and to study each of these independently. This yields for each pa-
rameter a time series which can be studied using signal processing notions (see Fig. 1).
Properties such as the mean, standard deviation and other statistical properties can be
computed on these time series.
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Figure 1. Number of queries per minute during 50 hours on a small size P2P Edonkey server. The three
curves correspond to different types of queries. Day/nighteffects can be observed as well as the start of the
measurement during which a lot of new peers connect which yields an increasing number of queries.

A more complex property is the autocorrelation function fora quantity X :
CX(τ) =< X(t + τ)X(t) >t − (< X(t) >t)

2, where< · >t is the mean over time.



From this, we can extract acorrelation time[6], defined as the first time were the func-
tion CX(τ) equals zero (it always happens due to the summation rule of empirical CX ).
The correlation time quantifies the “memory” of the property: the longer it is, the greater
are the persistence of fluctuations in the data.

Note that very often data are not given as a sequence of snapshots but rather
as a sequence of events: email networks for instance are defined by a set of triples
(from,to,date), the date being the moment when the mail was sent. If one considers a
snapshot every second, since it is likely that no two events (two emails sent exactly at
the same time) happen simultaneously then the observed networks are very small. On
the contrary, if the aggregation is done on a larger scale (every minute, hour or day)
more events are to be observed on each snapshot but the temporal order of these events
is going to be lost in each snapshot (mail replies or forwardsfor instance). In complex
networks, different time scales can be used depending on theparameter or phenomenon
observed. For instance when considering a typical P2P system, one can study the instan-
taneous throughput (one second or less), connection duration of a peer (minutes to days),
download duration of a file (minutes to weeks) or even the duration during which a file
is available on the network (up to years), etc.

2. Definition of dynamic properties

Considering the evolution as a sequence of snapshots is an efficient and simple approach
in many cases but some properties cannot be directly observed in this framework. For
instance it is natural to look at the duration of contacts or non-contacts between individ-
uals in a network [7] or to study the evolution of communities. For these simple exam-
ples, one has to consider the evolution of the network from one time step to the next, or
the whole evolution. Hereafter we detail the case of the evolution of communities in a
network.

Communities are defined as dense subgraphs with few edges between them and can
be found in many complex networks. The identification of suchsubgraphs is important
in many contexts since such communities can correspond to groups of friends or people
with similar interests, web pages with a similar content, etc. Moreover studies show that
information (rumors for instance) spread more rapidly inside communities than between
communities.

Many algorithms are available to find communities automatically on graphs, how-
ever theses methods are often time expensive and very sensitive to small modifications of
the topology: the addition of one edge can have strong implications on the global com-
munity structure. Therefore it is likely that applying these methods will produce com-
pletely different decompositions for each snapshot. One approach has been used in [4]
using a non classical definition of communities which allowsto follow the evolution of
community using a simple set of rules (birth, death, merge, split, growth and contrac-
tion). Similar ideas are presented in [8] by the identification of dense subgraphs in each
snapshot, the subgraphs begin merged afterwards. In [9], the authors present an approach
not specifically dedicated to the identification of communities but to the clustering prob-
lem in general which allows to cluster data in a timely fashion while keeping a good clus-
tering and no strong variations from one snapshot to the next. Approaches using tools
from data-mining are also available, which allow to computedense sets of nodes with
many interactions for a long period of time [10,11] (see Fig.2).
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Figure 2. Time ordered trajectories of individual (square) in groups(circles) in a contact network. Groups are
dense connected subgraphs which appear frequently in the evolving network.

The results obtained using any community detection algorithm for evolving network
give some information on the communities (lifetime, rate ofapparition and disappear-
ance, probability of merging and splitting, etc.) [11]. Thestudy of the evolution of the
network can therefore be done at a different scale which is not local and not global.

3. Study of specific users and phenomenon

Another approach which can be used to study evolving networks is to study specific
nodes or groups of nodes of particular interest (for instance communities). In many con-
texts algorithms and protocols are designed for average users and it is important to know
the number of users who are significantly deviant from this average and how they behave
in order to optimize protocols. For instance in most P2P systems, the load for a peer is
somehow proportional to the number of files shared, users which share many files can
therefore become bottlenecks if they are queried too often.In Fig. 3 we show results ob-
tained on a typical P2P network when trying to identify the users who share many files.
These users are more likely to be queried very often by other peers.

3.1. Transmission of information

A typical phenomenon on complex networks is the diffusion such as for viruses in epi-
demiology, routing in computer networks, innovation, etc.If recent studies have taken
into account the real dynamics [12,13], for most of them the process of transmission is
living on a static graph. In the static case the main issues are to find networks parame-
ters which explain the persistence of viruses within a givengraph. It has been shown for
instance that there is a strong relation between the largesteigenvalue of the adjacency
matrix of the network and the epidemic threshold [14].

Dynamics are also central in new communication services which are relying on mo-
bile users spread in the environment. The routing of information in such a context de-
pends on the connectivity between nodes and the mobility of these nodes. Understanding
the characteristics of these networks (called Delay Tolerant Networks) is therefore cru-
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Figure 3. Left: joint distribution of the number of files offered by a peer (in-degree) versus the number of files
he looks for (out-degree) in a P2P system. Peers offering many files and peers who do not offer any file but
look for many (free-riders) can be easily identified and further studied. Right: evolution of the number of files
requested for the three peers offering the more files (the three rightmost on the left figure). After13 hours some
of their files still have not been requested.

cial to propose protocols suitable for this context. The simplest ways to transmit data in
this context are the opportunistic forwarding algorithms [7]: when a node needs to send
some data to a destination, it uses its contacts to relay the data to the destination. Two
naive algorithms belong to this class, the first one consistsin waiting to be connected to
the destination to send the data directly, the second consists in forwarding the data to all
the neighbors which in turn are going to pass it to their neighbors. This is going to flood
the network with the data which eventually should arrive at the destination (see Fig. 4).

Figure 4. Naive instantaneous flooding in a mobile network, where node0 is trying to send a message to all
other nodes at time115000. Time on the edges represents the earliest time for the message to be transmitted to
the group of nodes below,i.e. the time when an edge is created between a node on top and a node at the bottom.
Note that two users (35 and37) cannot be reached. The data used for the flooding simulationare described
in [11]

4. Conclusion

We presented here three different approaches which can be used to study an evolving
network:

• the evolving network can be considered as a sequence of snapshots and each of
these snapshots can be studied as a static network;



• properties can be defined on the evolution itself, for instance the duration of con-
tacts in a network or the evolution of communities through time ;

• finally, specific users or phenomena can be studied, the more obvious being the
diffusion of information in an evolving network.

Many studies have been focused on static networks, therefore the first approach is the
more developed, however the definition of proper time scalesis a unsolved problem and
there is no warranty that such time scales can be defined in an automatic way given
an evolving network. For both other approaches, much work has to be done in order to
define new relevant parameters to describe the evolution as precisely as possible.

Finally, using all the parameters obtained with the previous approaches would allow
the introduction of evolutionary models for dynamic complex networks. Such models
could be used in formal contexts and for simulation purposes. Defining random models is
not an easy task and even for static networks some simple parameters cannot be captured
in a satisfactory way. A few models have already been introduced (see for instance [15])
which are modifying a given network by the addition of nodes and edges, however the
aim is in general not to generate an evolving network but to eventually obtain a network
with a given set of static properties. Much therefore remains to be done in this direction.
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