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Abstract

Many large real-world networks actually have a 2-mode mattireir nodes may be sep-
arated into two classes, the links being between nodes fefelift classes only. Despite
this, and despite the fact that many ad-hoc tools have besgroi for the study of spe-
cial cases, very few exist to analyse (describe, extragtael information) such networks
in a systematic way. We propose here an extension of the rasgt botions used nowa-
days to analyse large 1-mode networks (the classical caieg B-mode case. To achieve
this, we introduce a set of simple statistics, which we disdoy comparing their values
on arepresentative set of real-world networks and on thaolom versions. This makes it
possible to evaluate their relevance in capturing progedf interest in 2-mode networks.

| ntroduction.

A bipartite graph is a tripleG = (T, L, E') whereT is the set oftop nodes, L is the set of
bottomnodes, and® C T x L is the set of links. The difference witllassicalgraphs lies in the
fact that the nodes are in two disjoint sets, and that theslalways are between a node of one
set and a node of the other. In other words, there cannot bérdnlgetween two nodes in the
same set.

Many large real-world networks of interest may be modeledinadly by a bipartite graph.
These networks are call@dmode networksor affiliation networksvhen they represent groups
and membersi.g. each link represents a social actor’s affiliation to a groupgt us cite for
instance the actors-movies network, where each actorkedino the movies he/she played in
(e.g, Watts & Strogatz, 1998; Newmaat al., 2001a), authoring networks, where the authors are
linked to the paper they signed.g, Newman, 2001a; Newman, 2001b), occurrence networks,
where the words occurring in a book are linked to the sententeéhe book they appear in
(e.g, Ferrer & Solé, 2001), company board networks, where tleedmembers are linked to
the companies they lead.g, Robins & Alexander, 2004; Conyon & Muldoon, 2004; Battrsto
& Catanzaro, 2004), and peer-to-peer exchange network$ichweers are linked to the data
they provide/searche(g, Le Fessanét al, 2004; Voulgariset al,, 2004; Guillaumeet al., 2005;
Guillaumeet al,, 2004).
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Although there is nowadays a significant amount of notiorgstanls to analyse (classical)
1-mode networks, there is still a lack of such results fittihg needs for analysing 2-mode
networks. In such cases, one generally has to transform-thed2 network into a 1-mode one
and/or to introduce ad-hoc notions. In the first case, tteamiimportant loss of information, as
well as other problems that we detail below (Section 3). énxdbcond case, there is often a lack
of rigor and generality, which makes the relevance of thaiakd results difficult to evaluate.

The aim of this contribution is to provide a set of simpleistats which will make it possible
and easy to analyse real-world 2-mode networks (or at leakerthe first step towards this goal)
while keeping their bipartite nature.

To achieve this, we will first present an overview of the basitons and methodologies used
in the analysis of 1-mode networks. We will then show how peagually transform bipartite
networks into 1-mode networks in order to be able to analgsentwith the tools designed for
this case. This will lead us to a description of the state efdtt, then of the methodology used
in this paper. Finally, we will present and evaluate theisias we propose for the analysis of
2-mode networks.

Before entering in the core of this contribution, let us cetihat we only deal here with sim-
ple3, undirected, unweighted, static networks. Considerimgoted, weighted, and/or dynamic
networks is out of the scope of this paper; we will discuss thither in the conclusion. More-
over, in all the cases we will consider here (and in most waald cases), the graph has a huge
connected componente. there exists a path in the graph from almost any node to argr.dihn
the following, we will make our statistics on the whole graplerywhere this makes sense, but
we will restrict ourselves to the largest connected compbwhere this is necessary (namely for
distance computations). Again, this is classical in trexditure and has no significant impact on
our results.

1 Classical notions.

Let us consider a (classical) graph= (V| E'), whereV is the set of nodes anl C V' x V' is
the set of links. We will denote by (v) = {u € V, (u,v) € E} theneighbourhooaf a nodev,
the elements ofV(v) being theneighboursof v. The number of nodes iV (v) is thedegreeof
v: d°(v) = |N(v)|.

The most basic statistics describing such a graph are #gsisiz |V|, its number of links
m = |E|, and its average degrée= 2. Its densityd(G) = % i.e.the number of existing
links divided by the number of possible links, also is an im@ot notion. It is nothing but the
probability that two randomly chosen (distinct) nodes arkdd together.

Going further, one may define the distance between two nedgwigraph as the minimal
number of links one has to follow to go from one node to the ptiote that this only make
sense if there is a path between the two nodesf they are in the same connected component.
As explained above, in all the paper, we will only considestalices between the nodes in the

3This means that we do not allow loops (links from a node tdfjtser multiple links between two given nodes.
This is classical in studies of large networks: loops areaged separately, if some occur, and multiple links are
generally encoded as link weighs, or simply ignored.
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largest connected component (and we will give its size).nTtree average distance of the graph,
d(@), is nothing but the average of the distances for all pairsoofes in the largest connected
component.

The statistics described above are the ones we will calbdsc statistics. The next one
is not so classical. It is the degree distributiar, for all integer: the fractionp; of nodes of
degree. In other words, it is the probability that a randomly chosede has degree One may
also observe the correlations between degrees, defineé ase¢hage degree of the neighbours
of nodes of degreg for each integet. Other notions concerning degrees have been studied, like
assortativity (Newman, 2003a) for instance, but we do ntaibiis here.

The last kind of statistics we will discuss here aims at capgua notion of overlap: it
measures the probability that two nodes are linked togefivervided they have a neighbour
in common. In other words, it is the probability that any tweighbours of any node are linked
together. This may be done using two slightly different ans, both calledlustering coefficient
among which there often is a confusion in the literafurBoth will be useful in the following
therefore we discuss them precisely here.

The first one computes the probability, for any given nodesehat random, that two neigh-
bours of this node are linked together. It therefore reliesh® notion of clustering coefficient
for any nodev of degree at least, defined by:
|EN(v)] 2| Enw)]

~ NOIIVOIED ™~ do(v)(d*(v) — 1)

cG(v)

whereEy ) = EN (N(v) x N(v)) is the set of links between neighbourswofin other words,

cG (v) is the probability that two neighbours ofare linked together. Notice that it is nothing
but the density of the neighbourhood @fand in this sense it captures the local density. The
clustering coefficient of the graph itself is the averagehedf value for all the nodes:

2 vev CG (V)
{veV, do(v) =2}

CG(G) =

One may define directly another notion of clustering coedfitof G as a whole as follows:

3N
ce/(G) = 3~

where N, denotes the number of triangles. sets of three nodes with three links@h and NV,
denotes the number of connected triplies, sets of three nodes with at least two links,(in
This notion of clustering is slightly different from the preus one since it gives the probability,
when one chooses two links with one extremity in common, thattwo other extremities are
linked together.

Both notions have their own drawbacks and advantages. Tiefie has the advantage of
giving a value for each node, which makes it possible to afestire distribution of this value and

4Some authors make a difference by calling the first natiastering coefficienand the second orteansitivity
ratio, but we prefer to follow the most classical conventions oféanetwork studies here.
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the correlations between this value and the degree, fanost It however has the drawback of
reducing the role of high degree nodes. Moreover, impdstahiese definitions capture slightly
different notions, which may both be relevant dependinghendontext. We will therefore use
both notions in the following. This is why we introduced twiferent notations, namely ¢and
cc,, which emphasises the fact that one is centered on node$arudtter is centered on pairs
of links with one extremity in common.

One may consider many other statistics to describe largeanks. Let us cite for instance
centrality measures, various decompositions, and notiapturing the ability of each node to
spread information in the network. See Wasserman & Fau$4;18lbert & Barabasi, 2002;
Newman, 2003b; Bornholdt & Schuster, 2003; Brandes & Exdbb&2005 for surveys from
different perspectives. We will not consider here suchisttes. Instead, we will focus on the
most simple ones, described above, because they play alcesié in recent studies of large
networks, which we call post-1998 studies, as we will explaithe next section.

2 One-modelargereal-world networks.

Many large real-world networks have been studied in theditee, ranging from technological
networks (power grids, internet) to social ones (collaboranetworks, economical relations),
or from biological ones (protein interactions, brain taggpl) to linguistic ones (cooccurrence
networks, synonymy networks). See Wasserman & Faust, ¥dbdrt & Barabasi, 2002; New-
man, 2003b; Bornholdt & Schuster, 2003; Brandes & Erlebd0B5 and references therein for
detailed examples.

It appeared recently(g, Watts & Strogatz, 1998; Albert & Barabasi, 2002; NewmdiQ2b;
Bornholdt & Schuster, 2003) that most of these large realdweetworks have several nontrivial
properties in common. This was unexpected, and led to anriapostream of studies, devel-
opping a new kind of network analysis which we will call pd€98 network analysis (as it
followed the seminal paper Watts & Strogatz, 1998). Thigieads devoted to an overview and
discussion of these properties (based on the definitiomngivprevious section), on which the
rest of the paper will rely. We will use the same notationgaSeaction 1.

We are concerned here with large networks only, which mdaais:tis large. In most real-
world cases, it appeared thatis of the same order of magnitude asi.e. the average degree
k is small compared ta. Therefore, the density generally is very smallG) = —*» k

which is close td) sincen is much larger thaw in general. We will always supggsé)we are in
this case in the following.

It is now a well known fact that the average distance in laegé-world networks is in general
very small émall-worldeffect), even in very large ones, see for instance Milgra®s,71 Watts
& Strogatz, 1998. This is actually true in most graphs, sm&mall amount of randomness is
sufficient to ensure this, see for instance Watts & Stroged88; Kleinberg, 2000a; Kleinberg,
2000b; Bollobas, 2001; Erdos & Rényi, 1959. This propettgugh it may have important con-
sequences and should be taken into account, should theredbbe considered as a significant
property of a given network (see Section 5).

Another issue which received recently much attention, sem$tance Faloutsa al.,, 1999;
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Barabasi & Albert, 1999, is the fact that the degree distidn? of most large real-world net-
works is highly heterogeneous, often well fitted by a power. lg, ~ £~ for an exponenty
generally betweed and3.5. This means that, despite most nodes have a low degree gtkiste
nodes with a very high degree. This implies in general treatferage degree is not a significant
property, bringing much less information than the exponemthich is a measurement of the
heterogeneity of degrees.

If one samples a random network with the same sieeds many nodes and links) as a given
real-world oné, thus with the same density, then the obtained degreellittn is qualitatively
different: it follows a Poisson law. This means that the r@jeneous degree distribution is not
a trivial property, in the sense that it makes large realldvoetworks very different from most
graphs (of which a random graph is typical). The degree taifoes and other properties on
degrees, however, behave differently depending on theanktwnder concern.

Going further, the clustering coefficients (according tahbdefinitions) are quite large in
most real-world networks: despite most pairs of nodes atdimked together (the density is
very low), if two nodes have a neighbour in common then theyliaked together with a prob-
ability significantly higher tha® (the local density is high). However, the clustering coedfit
distributions, their correlations with degrees, and ottreiperties related to clustering, behave
differently depending on the network under concern.

If, as above, one samples a random graph with the same size @sgaal one then the
two definitions of clustering coefficients are equivalend aqual to the density. The clustering
coefficients therefore are very low in this case. If one sawjpl random graph with the same
number of nodeandthe very same degree distributibthen the clustering coefficients still are
very small, close t® (Newman, 2003b). Clustering coefficients therefore capéuproperty of
networks which is not a trivial consequence of their degistildution.

Finally, it was observed that the vast majority of large #@afld networks have a very low
density, a small average distance, a highly heterogenesgree distribution and high cluster-
ing coefficients. These two last properties make them vdfgrdnt from random graphs (both
purely random and random with prescribed degree distohlitiMore subtle properties may be
studied, but until now no other one appeared to be a genaxlrée of most large real-world
networks. The properties described here therefore servapst post-1998 studies, as a basis
for the analysis of large real-world networks, and so we feitus on them in the following. Our
aim will be to define and discuss their equivalent for 2-moelsvorks / bipartite graphs.

5See the appendix, page 30 for more detailed definitions artel bih how to understand this kind of statistics.

5We consider here a network chosen uniformly at random amumgmes having this size, using typically the
Erdos and Rényi model (Bollobas, 2001; Erdos & RéEn9§9).

"We consider here a network chosen uniformly at random amumgries having this number of nodes and this
degree distribution, using typically tlenfigurationmodel (Bender & Canfield, 1978; Bollobas, 2001; Molloy &
Reed, 1995; Molloy & Reed, 1998; Viger & Latapy, 2005.



3 Projection.

Let us now consider a large 2-mode network modeled as a tWggraphG = (T, L, FE). The
1L -projection ofG is the graphZ, = (L, E|) in which two nodes (ofL) are linked together if
they have at least one neighbour in commonTinin G: £, = {(u,v), 3z € T : (u,z) €
FE and(v,z) € E}. TheT-projectionG is defined dually. See Figure 1 for an example.

1 2 3 4

1 B
| W D
4 ‘ >. I — —_— A
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A B (3 D E F
Figure 1. An example of bipartite graph (center), togethéhws T-projection (left) and its
L -projection (right).

In order to be able to use the many notions defined on 1-modenet, and to compare a par-
ticular network to others, one generally transforms a 2-enoetwork into itsl -projection, often
called the one-mode version of the network. This was typicdne for the 2-mode networks
we presented in the introduction: the actors-movies ndtwgaransformed into itd_-projection
where two actors are linked if they acted together in a maig, \Watts & Strogatz, 1998); the
authoring networks are transformed into théuprojections,i.e. coauthoring networks where
two authors are linked if they signed a paper togetkag,(Newman, 2001a; Newman, 2001b;
Newmanet al., 2001a); the occurrence networks are transformed into thgirojections,i.e.
cooccurrence networks where two words are linked if theyeapm the same sentenaed, Fer-
rer & Solé, 2001); the company board networks are transfdrmto their L -projections where
two persons are linked together if they are member of a saraelli@.g, Robins & Alexander,
2004; Conyon & Muldoon, 2004; Battiston & Catanzaro, 2004gKt & Walker, 2003; Kogut
et al, 2006); and the peer-to-peer exchange networks are tramsfbinto their_L-projections
where two data are linked together if they are providedtdesat by a same peez.(), Le Fessant
et al,, 2004; Voulgariset al,, 2004; Guillaumeet al,, 2005; Guillaumest al., 2004).

This approach is of course relevant since the projectioneustudy make sense, and also
encode much information. Moreover, this allows the stud2-ofiode networks using the pow-
erful tools and notions provided for classical, 1-modewoeks. We however argue that in most
cases there would be a significant gain in considering thertiie version of the data. The main
reasons are as follows.

e Mostimportantly, there is much information in the bipastructure which may disappear
after projection. For instance, the fact that two actorggdan many movies together, and
the size of these movies, brings much information which isavailable in the projection,
in which they are simply linked together. This loss of infation is particularly clear when
one notices that there are many bipartite graphs which le#set same projection (while
each bipartite graph has only ofie and one_-projection), see Guillaume & Latapy,



2004b; Guillaume & Latapy, 2004a. The fact that much impariaformation is encoded
in the bipartite structure is a central point which we willidtrate all along this paper.

e Notice that each top node of degréeiznduces@ links in the L -projection, and con-
versely. This induces an inflation of the number of links wioae goes from a bipartite
gaph to its projection, see Table 1. In our examples, thisartiqularly true for peer-to-
peer: the number of links reaches more tharbillions in the 1 -projection, which needs
more tham0 GigaBytes of central memory to be stored using classicahfaxt) encod-
ings (while the original 2-mode network needs less thi@nMegaBytes). This is a typical
case in which the huge number of links induced by the prajads responsible for limi-
tations on the computations we are able to handle on the gngplactice.

| actors-movieg authoring| occurrences  peer-to-peer
Number of links inG 1,470,418, 45,904 183,363 55,829,392
Number of links inG | 15,038,083 29,552 392,066| 10,142,780,673
Number of links inG+ 20,490,112 134,492| 51,405,275 1,085,217,140

Table 1: Number of links in 2-mode networks and their progad, for the four examples we
will describe in Section 5.

e Finally, some properties of the projection may be due to tiogeption process rather than
the underlying data itself. For instance, it is shown in Nerat al., 2001a; Guillaume
& Latapy, 2004b; Guillaume & Latapy, 2004a that when considethe projection of a
random bipartite graph, one observes high clustering cosfis. Therefore, high clus-
tering coefficients in projections may not be viewed as $icgmt properties: they are
consequences of the bipartite nature of the underlying 8enmetwork. Likewise, the pro-
jection may lead to very dense networks, even if the biavirsion is not dense; this is
particularly the case here for tAieprojection of occurrences.

One way to avoid some of these problems is to useightedorojection. For instance, the weight
of a link (u, v) between two bottom nodes in the weighteeprojection may be defined as the
number of (top) neighbours andv have in common in the bipartite graph. Other definitions
may be considered: each top node may contribute to eachtlinfuces in thel-projection in

a way that decreases with its degree, for instance. In adiscasd despite such an approach is
relevant and promising, one still loses a significant amadimformation, and one transforms
the problem of analysing a bipartite structure into the fEwbof analysing a weighted one,
which is not easier. Indeed, despite the fact that impopergress has recently be done in this
direction (Barratt al., 2004; Barthélemyt al., 2005; Newman, 2004), much remains to be done
before being able to analyse precisely the structure ofwtetynetworks.

Our aim in this paper is to provide an alternative to the ptig@ approach, leading to a
better understanding of 2-mode networks. It must howeverldar that (weighted) projection
approachs also lead to significant insight, and we consiuasrthe two approaches should be
used as complementary means to understand in details therpes of 2-mode networks.



4 Stateof theart.

Two-mode networks have been studied in an amazingly widetyaof context. Let us cite for
instance company boards.¢, Robins & Alexander, 2004; Conyon & Muldoon, 2004; Battrsto
& Catanzaro, 2004; Newmaat al,, 2001a), sport teame.Qg, Bonacich, 1972; Onody & de Cas-
tro, 2004), movie actorse(g, Watts & Strogatz, 1998; Newmaat al, 2001a), management
science €.g, Kogut & Walker, 2003; Kogutt al,, 2006), human sexual relations.q, Ergun,
2002; Lindet al,, 2005), attendance to eventsd, Faustet al, 2002; Freeman, 2003), finan-
cial networks €.g, Caldarelliet al,, 2004; Dahuket al., 2005; Garlaschelkt al., 2004; Young-
Choon, 1998), recommandation networksy( Peruginiet al,, 2003), theatre performancesd,
Agneessenest al,, 2004; Uzzi & Spiro, 2005), politic ativisme(g, Boudourides & Botetzagias,
2004), student course registratioesy, Holmeet al,, 2004), word cooccurrences., Dhillon,
2001; Véronis & Ide, 1995), file sharing.g, lamnitchiet al, 2004; Le Fessardt al, 2004;
Voulgariset al, 2004; Guillaumeet al., 2005; Guillaumeet al, 2004), and scientific author-
ing (e.g, Roth & Bourgine, 2005; Morris & Yen, 2005; Newman, 2001a;wx&an, 2001b;
Newman, 2000).

These studies are made in disciplines as various as so@alkcss, computer science, lin-
guistics and physics, which makes the literature very richall these contexts, scientists face
2-mode networks which they try to analyse, with various waitons and tools. They all have
one feature in common: they insist on the fact that the hiteaniature of their data plays an
important role, and should be taken into account. They aisphasise the lack of notions and
tools for doing so.

Because of this lack of relevant notions and tools, mostasathave no choice but to con-
sider the most relevant projection of their 2-mode netwditkis leads for instance to studies of
interlocks between companies, see Robins & Alexander, ;2060dyon & Muldoon, 2004, stud-
ies of coauthoring networks, see Newman, 2001a; Newmard,200ewman, 2000, or studies
of exchanges between peers in peer-to-peer systems, sestatet al., 2004; Voulgarist al.,
2004; Guillaumeet al,, 2005; Guillaumeet al., 2004.

Many authors realise that this approach is not sufficierd, tanto use the bipartite nature
of their data. This is generally done by combining the userofgations and the use of basic
bipartite statistics, mostly degrees. For instance, amdies$ the coauthoring relations (typically
a projection) and the distributions of the number of papignsesi by authors and of the number of
authors of papers.€.the bipartite degree distributions, see Section 6) (Newr2@@0). Authors
may also consider weighted projections, see for instant¢gsBm & Catanzaro, 2004; Morris
& Yen, 2005; Guillaumeet al., 2004; Guillaumeet al,, 2005; lamnitchiet al, 2004; Newman,
2000, which has advantages and drawbacks, as discussectionSe

Going further, some authors introduce bipartite notionsigleed for the case under study.
This is often implicit and restricted to very basic propestilike the case of degree distributions
cited above (which essentially capture the sizewd@ntsand the number of events in whipler-
sonsor objectsare involved, in most cases). But some authors introduce sudstle notions, like
notions of overlap (Bonacich, 1972), clustering (Borgétiverett, 1997; Robins & Alexander,
2004; Lindet al, 2005), centrality measures (Faust, 1997), degree ctimesa(Peltomaki &
Alava, 2005), and others (Young-Choon, 1998; Ergun, 200#d&elli et al., 2004; Perugini
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et al, 2003; lamnitchiet al, 2004; Borgatti & Everett, 1997; Robins & Alexander, 2004nd.
et al, 2005). Most of these notions are ad hoc and specific to trewader study, but some of
them actually are very general or may be generalised. Onaratemtral aims here is to give a
complete and unified framework for the most general of thegiems. We will cite appropriate
references when the notions we will discuss have already t@esidered previously.

As already said, a different and interesting approach igldg@ed in Newmart al, 2001a;
Guillaume & Latapy, 2004b; Guillaume & Latapy, 2004a. Théhaws study the expected prop-
erties of the projections given the properties (namely tgreke distributions) of the underlying
bipartite graph. They show in particular that the expectastering coefficient in the projections
is large, and give an efficient estimation formula; this nsetirat a high clustering coefficient
in a projection may be seen as a consequence of the undebipadite structure rather than
a specific property of the network. Conversely, if the clustg coefficient of the projection
is different from the expected one, it means that the unawylipartite structure has nontrivial
properties responsible for it. These properties shoulethee be further analysed. Our aim here
is to propose notions and tools for such an analysis. Thisoagh has been used with profit in
several cases, see for instance Newtzal., 2001a; Newmaet al,, 2002; Conyon & Muldoon,
2004; Uzzi & Spiro, 2005.

Finally, a significant effort has already been made to aehileg goal we have here, or similar
goals: some studies propose general approaches for thesisnall 2-mode networks. This is
for instance the case of Faust, 1997, focused on centrakigsores, of Breiger, 1974, which
proposes to consider both projections and compare thengfadonacich, 1972, which studies
in depth the notion of overlap.

Let us cite in particular Borgatti & Everett, 1997, which Hhe very same aim as we have
here, but belongs to what we calbssical or pre-1998, social network analysis. In particular,
they do not use the comparison with random graphs, cent@irtgontribution (see Section 5),
which probably reflects the fact that this method was not aslua 1997 as it is now. For the
same reasons, they do not deal with clustering questionshwitay a key role here. On the
other hand, they address some important issues (like \gsitiah) which we consider as out of
the scope of our contribution. It is interesting to see takhough the initially claimed aim is
very similar, the final contributions are significantly @ifént.

Other researchers propose formalisms suited for the asalfy8-mode networks, often based
on a generalisation of well known models. Let us cite Galatides €.g, Roth & Bourgine,
2005), correspondence analysesg, Jr., 2000; Faust, 2005), extensions of blockmodelg,(
Borgatti & Everett, 1992; Doreiast al, 2004) and p* modelse(g, Skvoretz & Faust, 1999;
Faustet al, 2002; Agneessere al., 2004) and a particularly original approach based on boolea
algebra in Bonacich, 1978.

Therefore, there already exists quite an impressive amofunork on 2-mode networks,
and on methods for their analysis. However, we observe thatyrof the approaches proposed
previously, though very relevant, are hardly applicabletge networks, typically networks with
several hundreds of thousands nodes. Moreover, they agdtgron quite complex notions and
formalisms, which are difficult to handle for people onlyargsted in analysing a given network.
Finally, none of them consists in a generalisation of the-4898 notions outlined in Section 1,



which are nowadays widely used to analyse 1-mode networks.

We propose here such a contribution. We design simple reotonl methods to analyse
very large 2-mode networks, which could be used as a firstist@articular studies. These
methods may then be extended to fit the details of particases, and we explain how to do
so. Moreover, they are not only extensions of classicabmstiwe go further by proposing new
notions designed specifically for the bipartite case. Opragch may also be applied to smaller
networks, as long as they are not too small (typically thadsaf nodes).

As explained above, the topic has a deep interdisciplinatyre. In order to make our
techniques usable by a wide audience, we give a didactieptason and we focus on basic
notions. Let us insist however on the fact that this pregimtas rigorous and formal, and,
as will appear all along the paper, the results are suffidierdring a significant amount of
information on a given network.

Finally, we insist on the fact that analysing properly anddatails a given network is a
difficult task, which may be handled using different methotisere is no unique way to obtain
relevant information and results in such cases. Moreoveghmesides in the interpretations
made from the outputs of these approaches. All the ones wedigad above, and the one we
propose here, should therefore be seen as complementagy tlaan concurrent.

Let us conclude this section by noticing that, because ofvile dispersion of contributions
due to the interdisciplinary nature of the topic (and the faat it received continuous attention
since several decades), we certainly missed some referewé however expect that the ones
we have cited span well the contributions on the topic.

5 Methodology and data.

As already said, the methodology we follow has mainly beereld@ped since the publication
of the seminal paper Watts & Strogatz, 1998, and thus we tétlei post-1998 approach. It
relies on the introduction of statistical parameters aiatezhpturing a given feature of networks
under concern, and then on the comparison of the behavibtealeworld networks concerning
these parameters as compared to random %n&he underlying principle is that a parameter
which behaves similarly on real-world and random netwosksi$t a property ofmostnetworks
(of which random networks are representatives) and sogthdumay play an important role,
it should not be considered as surprising and meaningfuderming the description of the real-
world network. Instead, one generally looks for propertidgsch make real-world networks
different from most networks.

Our contribution here relies on this methodology. Namelg,will define statistical param-
eters aimed at capturing properties of bipartite graphd,then evaluate the relevance of these
parameters by comparing their values on random bipartaplgy and on real-world 2-mode net-
works.

8In the whole paper, the termandomrefers to object chosen uniformly at random in the givensclasery
element of the class has the same probability to be chosenddsariptions on how to generate such graphs, we
refer to Erdds & Rényi, 1959; Bollobas, 2001; Newnwdral., 2001a; Guillaume & Latapy, 2004b; Viger & Latapy,
2005.
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Just like one considers purely random graphs and randonhgnajih prescribed degree
distributions in the case of 1-mode networks, we will usenlqmirely random bipartite graphs
and random bipartite graphs with prescribed degree didgiobs. Such graphs are constructed
easily by extending the 1-mode case, see for instance Newtadn2001a; Guillaume & Latapy,
2004b°. Note that these models (both the 1-mode and 2-mode vejsjensrate graphs that are
not necessarilgimple they may contain some loops and multiple links. There aregver very
few such links, and simply removing them generally has ncaichpn the results. This is what is
generally done in the literature, and we will follow this @ention here: in our context, it cannot
have a significant impaét.

Notice also that the properties of random graphs may be fbyrrstudied, see for instance
Newmanet al., 2001a; Guillaume & Latapy, 2004a. One may also evaluatertean prop-
erties of these graphs, and their standard deviationsg ugpically approaches like the ones
developped in the p-star or ERGM (exponential random grapdiats) frameworksg.g, Robins
et al, 2005)!t. However, our purpose here is only to identify propertiest thake real-world
data different from random ones, not to quantify these difiees precisely. We will therefore
only compare empirical data to a typical random graph of tesered class (the fact that
it is typical was checked by reproducing many times our grpemts, which led to the same
observations), and leave these investigations for fustloek, see Section 10.

In order to complete our comparison between random andwvedtt cases, we also need a
set of real-world 2-mode networks. We chose the followings fiastances, which correspond to
the examples given in the introduction and have the advamégpanning well the variety of
cases met in practice:

¢ theactors-moviesetwork as obtained from tHaternet Movie Data Bas¥ in 2005, con-
cerningn, = 127,823 actors anch+ = 383,640 movies, withm = 1,470,418 links;

e an authoring network obtained from the onlinarXiv preprint repository®, with n+ =
19,885 papersn . = 16,400 authors, andn = 45,904 links;

e anoccurrencegraph obtained from a version of the Bibfewhich contains:, = 9,264
words andht = 13,587 sentences witlm = 183,363 links;

e apeer-to-peeexchange network obtained by registering all the exchapgesessed by a
large server during 48 hours (Guillauragal, 2005; Guillaumeet al, 2004), leading to
nt = 1,986,588 peersn, = 5,380,546 data, andn = 55,829,392 links;

®We provide a program generating such graphistg:/jlguillaume.free.fr/iwww/programs.
php

%0ne may also use the methods described in Viger & Latapy, 806bBtain directly simple (connected) graphs,
but this is more intricate, and unnecessary in our context.

1Seehttp://www.sna.unimelb.edu.au/pnet/pnet.html and http://csde.washington.
edu/statnet/

125eehttp://www.imdb.com/

13Seehttp://arxiv.org/ .

14Seehttp://www.tniv.info/bible/
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We provide these data, together with the programs computiagstatistics described in this
paper®. The key point here is that this dataset spans quite well @hiety of context in which
large 2-mode networks appear, as well as the variety of deta.s

Let us insist on the fact that our aim here is not to derive kmiens on these particular
networks: we only use them as real-world instances to rstthe use of our results and to
discuss their generality. This is why we do not detail moeewhay they are gathered and their
relevance to any study. This is discussed in various retereand is out of the scope of this
paper.

6 Basic bipartite statistics.

The basic statistics on bipartite graphs are direct extessof the ones on classical (1-mode)
graphs. One just has to be careful with the fact that somsickproperties give birth to twin
bipartite properties while others must be redefined.

Let us consider a bipartite gragh= (T, L, F'). We denote byt = |T| andn, = || the
numbers of top and bottom nodes, respectively. We denote by | E| the number of links in
the network. This leads to a top average dedree- e and a bottom oné, = % One may
obtain the average degree in the gréph= (T U |, E) ask = 21— = ”Tq’jjjggi’ﬂ. Finally,
we obtain the bipartite densit(G) =
po§siblle ones. Note that this is different from the density76 §(G’) = (nﬁnﬂfﬁﬁm_l),
which is much lower.

Concerning the average distance (again, we restrict distaomputation® to the largest
connected component (denotedlbg), which contains the vast majority of nodes, see Table 2),
there is no crucial difference except that one may be inteddsy the average distance between
top nodes and between bottom nodés,andd,. These values may be significantly different
but one may expect that they are very close since a path betweetop (resp. bottom) nodes
is nothing but a path between bottom (resp. top) nodes withasiditionnal links. Notice that
there is no simple way to derive the average distahiceGG’ from the bipartite statisticg, and
dr.

The values obtained for each of these basic properties ofoauexamples, together with
values obained for random bipartite networks with the saaee are given in Table 2. It appears
clearly that our examples may be considered as large neswatk small average degrees, com-
pared to their size. The density therefore is small. Moredhe average distance is also small.
These basic properties are very similar to what is observet-mode networks: both 1-mode
and 2-mode large real-world networks are sparse and havaldararage distance, and in both
contexts this is also true on random graphs.

15Seenttp://www.liafa.jussieu.fr/ latapy/Bip/

18Djistance computations are expensive; the exact value caﬂmnmputed in a reasonable amount of time for
data of the size we consider here. Instead, we approximatavitrage by computing the average distance from a
subset of the nodes to all the others, this subset beingéargagh to ensure that increasing it does not improve our
estimation anymore, which is a classical method. All otlmmputations are exact.
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actors-movies authoring occurrences peer-to-peer

real random| real random| real random real random
nrt 127,823 idem 19,885 idem 13,587 idem 1,986,588 idem
n 383,640 idem 16,400 idem 9,264 idem 5,380,546 idem
m 1,470,418 idem 45,904 idem | 183,363 idem | 55,829,392 idem
k+ 11.5 idem 2.3 idem 13.5 idem 28.1 idem
ki 3.8 idem 2.8 idem 19.8 idem 10.4 idem
k 5.7 idem 2.5 idem 16.0 idem 15.2 idem
) 0.000030 idem | 0.00014 idem 0.0015 idem | 0.0000052 idem
lccr | 124,414 125,944 | 16,209 18,512 | 13,579 13,587 | 1,986,343 1,426,978
lcc, | 374,511 381,431 | 11,654 14,607 | 9,246 9,264 | 5,380,507 5,054,689
d+ 6.8 5.3 13.1 9.3 3.1 3.0 5.3 5.0
d, 7.3 5.8 13.9 9.9 3.8 3.7 5.4 4.9
d 7.2 5.8 13.5 9.6 3.4 3.2 5.3 4.9

Table 2: Basic bipartite statistics on our four examples@mdandom bipartite graphs with the
same size (same number of nodes and links, and thus saméydmmsiaverage degree as the
real-world ones).

7 Bipartite statistics on degrees.

The notion of degree distribution has an immediate extensiohe bipartite case. We denote by
1, the fraction of nodes if. having degree and by T, the fraction of nodes ifi having degree
i, and then cal(L;),;>o the bottom degree distribution afd;);>, the top one. See the appendix,
page 30, for more detailed definitions and hints on how to tstded this kind of statistics.
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Figure 2: Degree distributions in our four real-world 2-readetworks. First row: for top nodes.
Second row: for bottom nodes.

The top and bottom degree distributions of our four examgtegiven in Figure 2. One may
observe on these plots that the bottom degree distributicengery heterogeneous and well fitted
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by power laws (of various exponents). This is true in patéictor the occurrences graph, which
is a well known fact for a long time (Zipf, 1932): the frequgraf occurrences of words in a
text generally follows a particular kind of power law, nanmg&gf law. Instead, the shape of the
top degree distribution depends on the case under concéwereas it is well fitted by a power
law in the peer-to-peer and actors-movies cases, it is dan & power law in the authoring and
occurrences cases. This is due to the fact that papers hawétedl number of authors (none
has one hundred authors for instance), and likewise sezgdrave a limited number of words.
Moreover, the number of very short sentences also is not. Hngleese two cases, one can hardly
conclude that the top degrees are very heterogeneous.

We finally conclude that, even if heterogeneity is presenableast one side of a 2-mode
network, this is not generally true for both sides. This sefes real-world 2-mode networks
into two distinct classes, which should be taken into actoupractice. This also confirms that
considering the bipartite statistics brings significafidfmation as compared to the projections,
which exhibit power law degree distributions in all cases.

Let us now compare these real-world statistics with randoaplgs. If one generates purely
random bipartite graphs of the same size as the ones coeditiere, the T and 1) degree
distributions are Poisson laws. Therefore, the heterdgefisome degree distributions is not
present, and even in the cases where the distributions &kenoheterogeneous they do not fit
the random case. We will therefore compare in the followingreal-world 2-mode networks to
random bipartite graphs with the same size and the samerftbpatom) degree distributions.

The next natural step is to observe possible correlatiobstween top and bottom degrees.
In order to do this, we plot in Figure 3 the average degree ighfurs of nodes as a function of
their degree, both for top and bottom nodes, separatelythkr aords, for each integeme plot
the average degree of all nodes which are neighbours of aofadkgree;. We plot the same
values obtained for random graphs of the same size and sayresed#istributions.

In the cases of actors-movies and peer-to-peer, the plothdéorandom cases are close to
horizontal lines, showing that there are no correlatiortsseen a node degree and the average
degree of its neighbours: this last value is independertte@hbde degree. In both cases, how-
ever, the real-world network displays nontrivial corredas. In the case of actors-movies, for
instance, the average degree of neighbours of bottom ndaesofver-left corner plot in Fig-
ure 3) decreases with the node degree. In other words, if {@n plays in many movies then
he/she tends to play in smaller movies (in terms of the nurobierolved actors). Such nontriv-
ial observations may be made on the other plots for actordea@nd peer-to-peer as well.

In the cases of authoring and occurrences, the plots forathéom graphs are nontrivial:
they grow for the top statistics, and are far from smooth far bottom ones. Here again, the
real-world cases exhibit significantly different behavguat least for the top statistics, thus
demonstrating that these behaviours are nontrivial arsde@lto intrinsinc properties of the un-
derlying networks. Detailing this however is out of the se@f this paper. The key point here is
to have evidence of the relevance of these statistics.

Notice that, despite they already bring much informatidwe, $tatistics observed until now
are almost immediate extensions of the classical ones. @gevonder if the bipartite nature of

17See the appendix, page 30 for more detailed definitions artd dih how to understand this kind of statistics.
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Figure 3: Degree correlations in our four real-world 2-mo@éworks, and in random bipartite
graphs of the same size and same degree distributions. ré&wstfor top nodes. Second row:
for bottom nodes.

the networks under concern may lead to entirely new notionserning degrees. We propose
one below, with its variants.

Let us consider a nodein a bipartite graptG = (T, L, ), and let us denote by (N (v))
the nodes at distancefrom v, not includingwv, calleddistance2 neighboursof v. We will
suppose that is a top node, the other case being dual. Notice ¥@v(v)) C T, and actually
N(N(v)) is nothing butN (v) in the T-projectionG+. The integet N(N(v))| therefore plays a
central role in the projection approach, since it is the degifv in G-.

But there are several ways fotto be linked to the nodes iV (N (v)), this information being
lost during the projection. The two extreme cases occur whisnlinked to only one node
in L, with N(u) = N(N(v)), or whenv is linked to| N (N (v))| nodes inL, each being linked
to only one other node ifi. Of course, intermediate cases may occur, and the actualisit
may be observed by plotting the correlations between theedeof nodes), i.e. |N(v)|, and
their number of distancgneighbours|N (N (v))|. These statistics therefore offer a way to study
how node degrees in the projection appear, and to distihdngisveen different behaviours. For
instance, they make it possible to say if a given author has/ro@eauthors because he/she writes
many papers or if he/she writes papers with many authorsh Sadénformation is not available
in the projection of the authoring 2-mode network.

The plots in Figure 4 show that, as one may have guessed, theanwf distance neigh-
bours of a node grows with its degree; more precisely, it galyegrows as a power of the degree
(the plots follow straight lines in log-log scale), and adly almost linearly. This is in confor-
mance with the intuition that the number of distaRageighbours should be close to the degree
of the node times the average degree of its neighbours. Imatidom cases, this leads to very
straight plots (except in the top plot of occurrences). Téa-world plots are quite close to the
random ones, with a few notable exceptions: the slope oflthtegsignificantly different for the
top plot of peer-to-peer, the real-world plots often arendigantly below the random ones for
large degrees, and they are in general slightly lower thanghdom ones even for small degrees.
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Figure 4. Correlations of the number of distariceeighbours with node degrees in our four
examples, and in random bipartite graphs with the same sizdegree distributions. First row:
for top nodes. Second row: for bottom nodes.

This means that there is some redundancy in the neighbodsh@diereas in random cases the
number of distanc@ neighbours is close to the sum of the degrees of the direghheurs,

in real-world cases the direct neighbours have many neigisia common and so the number
of distance2 neighbours is significantly lower. This is an important teatof large real-world
networks, that we will deepen in the next sections.

8 Bipartiteclustering and overlap.

Whereas there were quite direct extensions of the basiststatand the ones on degrees to the
bipartite case, the notion of clustering coefficient dodsmake any sense in itself in this context.
Indeed, it relies on the enumeration of the triangles in tia@lgs, and there can be no triangle in a
bipartite graph. We will therefore have to discuss the festgaptured by the classical clustering
coefficients in order to propose bipartite extensions.

Both definitions of classical clustering coefficients cagptiine fact that when two nodes have
something in common (one neighbour) then they are linkedttay with a probability much
higher than two randomly chosen nodes. Conversely, theyiephe fact that when two nodes
are linked together then they probably have neighboursnmeon. In other words, they capture
correlations between neighbourhoods. We will use this tpoirview here and define a first
notion of clustering coefficient defined for pairs of nodestfie same set or L):

[V (u) N N(v)|
[N(u) UN ()|

cG(u,v) =
This is the most direct generalisation of the classicalamtand it was already suggested in
Borgatti & Everett, 1997, and explicitely used in Guillaueteal., 2005 in the context of peer-
to-peer exchange analysis. It captures the overlap betneighbourhoods of nodes: dfandv
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have no neighbour in common then, ¢, v) = 0. If they have the same neighbourhood, then
cG (u,v) = 1. And if their neighbourhoods partially overlap then theweais in between, closer
to 1 when the overlap is large compared to their degrees. SeeeFagior an illustration.

This definition however has several drawbacks. The first etiea fact that it defines a value
for pairs of nodes. One may want to capture the tendencgrad particular node to have its
neighbourhood included in the ones of other nodes. To aelilgg, one may simply define the
clustering coefficient of one node as the average of its efung} coefficients with other nodes.
We however do not include in this averaging the pairs for Whiwe overlap is empt}#: most
nodes have disjoint neighbourhood, which does not bringrmétion. Like in the 1-mode case,
we want to measure the implication of the fact of having onght@ur in common on the rest
of the neighbourhoods. We finally obtain:

D veN(N () CC (U, V)
[N(N(u))|

cG(u) =

One may then observe the distribution of these values, tioeielations with degrees, etc. One
may also define the clustering coefficient of the top (resptobo) nodes, denoted by 4C)
(resp. c¢(L)) as the average of this value over top (resp. bottom) nodes.average over the
all graph, denoted by ¢6G'), can then be obtained easily:,¢6) = "<& CEL) e will
discuss the obtained values below, see Table 3.

The notion of clustering coefficient discussed until nownseatension of the first classical
one. It captures the fact that a node which has a neighbownmmn with another node gener-
ally has a significant portion of neighbours in common withTibere is another way to capture
this, similar to the second definition of classical clustgrcoefficient, is to measure the proba-
bility that, given four nodes with three links, they actyadre connected with four links (all the

possible bipartite ones):
.y G)_QNN
NN

whereN,, is the number of quadruplets of nodes with four linksidnand Ny is the number of
guadruplets of nodes with at least three. This extensioh@fecond notion of classical clus-
tering coefficient was already proposed in Robins & Alexana@04 in the context of company
board networks. It is a natural generalisation of the chiusgecoefficientcc, on classical (1-
mode) graphs: this last notion is the probability, whenehredes are linked in a chain (with two
links), that they form a triangle; the gamotion is nothing but the probability, when four nodes
are linked in a chain (with three links), that they form a sguarlhis extension is natural since
there cannot be any triangle in bipartite graphs. We wiltdss the obtained values below, see
Table 3.

The two notions above generalise the classical definitibiotustering coefficients. Captur-
ing the overlap between neighbours may however need motcesyme. Suppose that degrees are
heterogeneous in the network, as it is often the case ($etj@nd consider two nodesandwv.

18As a consequence, the obtained value will neved daut it may be very small. Notice also that the clustering
coefficient is not defined for nodessuch thatV (N (v)) = 0 (recall that, by definitiony ¢ N(N(v)).
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If one of these nodes has a high degree and the other has e ¢hu, v) will necessarily be
small. This will be true even if one of the neighbourhoodsirely included in the other. One
may however want to capture this, which can be done usingtteing definition:

[N(u) N N(v)
min ([N (u)|,|N(v)])

CC:(U> U) =

One may define dually:

[N (u) VN (v)|
max (| N (u)], [N (v)])
See Figure 5 for an illustration. These two notions, calléa-rmand max-clustering, were intro-
duced first in Guillaumet al,, 2005. The first one emphasises on the fact that small neighbo
hoods may intersect significantly large ones; it is equalmdenever one of the neighbourhoods
is included in the other. The second one emphasises on thinéneighbourhoods (both small
or large ones) may overlap very significantly: itli®nly when the two neighbourhoods are the
same and it tends to decreases rapidly if the degree of orfeeahvolved nodes increases. It
captures the fact that nodes wdimilar degrees have high neighbourhood overlaps.

Figure 5: Examples of bipartite clustering coefficients] arterpretations. Left: a case in which

cG(u,v) =

cG(u,v) = % = 0.333--- is quite small, despite the fact thatand v have two neighbours
in common, due to the fact that the union of their neighbosirguite large; on the contrary,
CG(u,v) = % = 0.666 - - - is quite large, revealing that one of the neighbourhoodsnmst

included in the other; the value of &, v) = % = 0.4 indicates that this may be due to the
fact that one of the nodes has a high degree. The situatiaffesetht in the case at the center:
all clustering coefficients are quite high (resp.5, 0.666 - - -, and0.666 - - -), indicating that
there is not only an important overlap, but that this ovedapcerns a significant part of each
neighbourhoods (and thus the two nodes have similar dég@eghe right, the two nodes have
a small clustering coefficient ¢@:,v) = 2 = 0.25, and the fact that the value of f&, v) =

% = 0.4 remains quite small indicates that this is not due to thetfzat one of the two nodes
has a very high degree compared to the other one. If onesdawadarger degree nodes, then the

difference betweesmallandhighvalues is clearer, but the figure would be unreadable.

With these definitions, one may define, @), ca(T), ca(l), ca(G), ca(v), cG(T),
ce(L), and cg(G) in a way similar to the one used above for, @9, ca(T), ca(L), and
cG(G). The distributions and various correlations may then beo/es!.

We give in Table 3 the values obtained for our four examplgsttoer with the values obtained
for random bipartite graphs with same size and degreelhligions (the values for purely random
bipartite graphs are similar). It appears clearly that tbigoms we introduced capture different
kinds of overlaps between neighbourhoods. However, eXcepicy (G), the obtained values
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actors-movies authoring occurrences peer-to-peer
real random| real random| real random real random
Co 0.064 0.046 0.29 0.27 0.066  0.066 0.056 0.019
Ce 0.36 0.20 0.31 0.25 0.065 0.038 0.076 0.074
cey(G) | 0.0082  0.00024 | 0.079 0.00012 | 0.053  0.048 | 0.0094 0.00019
G
G

cG(T) | 0.24 0.23 0.56 0.56 0.19 0.20 0.27 0.24
cG(L) | 0.81 0.79 0.73 0.70 0.64 0.61 0.39 0.42
cG(T) | 0.087  0.062 | 0.36 0.34 |0.097 0.097 | 0.074  0.024
cG(L) | 0.37 0.21 0.33 0.26 | 0.069 0.041 | 0.091 0.089

Table 3: Bipartite clustering statistics on our four exaasgnd on random bipartite graphs with
the same size and same degree distributions.

are not very different on random graphs and on real-worldvoeds. This indicates that these
statistics do not capture a very significant feature of laegéworld networks, which will discuss
this further below. Instead, the obtained values foy (€&) is significantly larger on real-world

networks than on random graphs, which shows that it captonogs relevant information.
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Figure 6: Cumulative distributions of the various clustgrcoefficients in our four real-world
2-mode networks. First row: for top nodes. Second row: fdatdm nodes.

We show in Figure 6 the cumulative distributidfi®f cc,(v), cq (v) and cg(v) for our four
examplesj.e. for each valuer on the horizontal axis the ratio of all the nodes having ae&alu
lower thanz for these statistics. Before entering in the discussiorhesé¢ plots, notice that,
by definition, we have q¢v) < ccs(v) < cG(v) for anywv. Therefore, the lower plots in each
case of Figure 6 is the one of &), the upper is the one for gw) and the one for ggv) is in
between.

More interesting, the plots exhibit quite different belwawrs. In several cases (in particular
top of actors-movies, occurrences and peer-to-peer, dsagbbttom of occurrences and peer-

19See the appendix, page 30 for more detailed definitions arts ih how to understand this kind of statistics.
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to-peer) the plots for g¢v) and cg(v) grow very rapidly and are close tcalmost immediately.
This means that the values of these statistics are very sat@bst0, for most nodes: in these
cases, the neighbours of nodes have a small intersectiolpared to the union of their neigh-
bourhoods. However, in several cases, the plots fplvggrow much less quickly, and remain
lower thanl for a long time. In several cases, it is even significantlydothanl by the end
of the plot, meaning that for an important number of nodesviilae of cg(v) is equal tol:
almost10% in the case of top of actors-movies, alm@gt; in the cases of top authoring and
bottom of peer-to-peer, and more th&s in the case of bottom of occurrences. This means
that, despite overlaps are in general small compared toghbesible value, the neighbourhoods
of many low-degree nodes significantly or even completebriap with other nodes neighbours.
Other cases display a very different behaviour: in both tag Bottom plots of authoring,
and in bottom of actors-movies, it appears clearly that aistgnt number of nodes have a large
value for cg(v), cG(v) and cg(v). This means that node neighbours overlap significantly, and
that this is not only a consequence of the fact that low degogles have their neighbourhoods
included in the ones of other nodes.
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Figure 7: Cumulative distributions of the cdustering coefficient in our four real-world 2-mode
networks, and in random bipartite graphs of the same sizesame degree distributions. First
row: for top nodes. Second row: for bottom nodes.

Again, our aim here is not to discuss in detail the speciéisitof each case, but to give
evidence of the fact that these statistics have nontrivealalsiours and capture significant in-
formation. It is clear from the discussion above that theehnotions of clustering captured
by ca(v), ca(v) and cg(v) are different, and give complementary insight on the uryiteyl
network properties. One may however be surprised by thettiattcg (v) often is very small,
which we deepen now by comparing its behaviours on realdvaates and on random ones, see
Figure 7%°.

20For clarity and to avoid long discussions on specific behasiovhich is out of our scope here, we only compare
the real-world and the random behaviours af(eg (not of the two other notions of clustering coefficients).

20



In these plots, it appears clearly that, except in the cabetbdm of actors-movies, the plots
of the real-world values and of the random ones are quitdaindihis means that, concerning the
values of c¢(v), real-world graphs are not drastically different from rarmdones (they however
have slightly higher values of g@) in most cases). In other words, this statistics does not
capture very significant information, according to the rnoelthlogy described in Section 5. This
is due to the fact that the low degree nodes (which are nuraéncaur networks) have with high
probability their neighbours in common with high degree emicy definition, this induces a low
value for cg(v), and even lower for g¢v). This is true by construction for random graphs, and
the plots above show that this is mostly true for real-wodtworks also, which was not obvious.

Similar conclusions follow from the study of @), but the study of cgv) leads to the
opposite conclusion: an important number of nodes have tteéghbourhood included in the
one of other (large degree) nodes, as already discussedh Wwhppens much more rarely in
random graphs. We do not detail these results here, singedthaot fit in the scope of this
paper. Instead, we will propose a new statistics in the restian that has several advantages on
the clustering coefficients discussed here and does nothewvelrawbacks.

Before turning to this other statistics, let us observe threetations between node degrees
and their clustering coefficient. Again, for clarity and taimtain the paper within a reasonable
length, we focus on ¢¢v) and its comparison with the random case. See Figure 8.
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Figure 8: Correlations of the ¢@) clustering coefficient with node degrees in our four examsple
and in random bipartite graphs with the same size and degst&@dtions. First row: for top
nodes. Second row: for bottom nodes.

The values for the random graphs are below the ones for thevogll cases (or they coincide
at some points), in all plots. This shows that the value gf«care larger in real-world cases
than in random ones, but the difference is small, which corgfithe observations above. More
interestingly, it appears clearly that in most case$wgcdecreases as a power of the degree of
(straight line in log-log scale). In other words, the clustg coefficient of low degree nodes is
quite large, but the one of large degree nodes is very srikalid random graphs.
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9 Thenotion of redundancy.

In the previous section, we discussed several ways to extendassical notions of clustering
coefficient to the bipartite case. One may wonder if the bifganature of the networks under
concern may lead to new, specific notions, just like we oleskconcerning degrees in Section 7.
Moreover, one may want to capture the notion of overlap caricg one particular node; in
previous section, this was only possible by averaging theevabtained for a possibly large
number of pairs of nodes. This section answers this: it i9thel/to a new notion aimed at
capturing overlap in bipartite networks, in a node-cermtdashion.

First notice that neighbourhood overlaps correspond kslimhich are obtained in several
ways during the projection, and that these links cannot siégndjuished one from another in the
projection. They also reveal the fact that, among all thkslimduced by a node of a bipartite
graph in the projection, many (and possibly all) may acyuadl induced by others too. In other
words, if we remove this node from the bipartite graph thengtojection may be only slightly
changed (or even not at all). This can be captured by thedoilp parameter, which we call the
redundancy coefficiertf v:

_ [{{w.w} S N@), 3¢ #£v, (v/,u) € Eand(v/,w) € E}
o IN(v)\(Ig(v)\—l) ’

rc(v)

In other words, the redundancy coefficient.ak the fraction of pairs of neighbours oflinked

to another node than In the projection, these nodes would be linked togethem éwewere not
there, see Figure 9; this is why we call this the redundariéyid equal tol then the projection
would be exactly the same without if it is 0 it means that none of its neighbours would be
linked together in the projectich.

A
Figure 9: Example of redundancy computation. From left ghti a bipartite graph, itd -

projection, and thel_-projection obtained if the node is first removed. Only two links disap-
pear, leading to 1c1) = 2 = 0.666 - - -.

Again, we can derive from this definition the ones of ¢, rc(_L) and rdG), as well as
distributions and correlations. We give in Table 4 the valabtained for our four examples and
for comparable random graphs. It appears clearly from thakes that, except in the case of
occurrences, the redundancy coefficient is much largerahwerld networks than in random

2lnterestingly, the notion of redundancy we propose heregisvalent to the generalisation of the notion of
clustering coefficient to squares, denotedhy), proposed independently in Liret al, 2005: it is the probability,
when a node has two neighbours, that these two nodes hawaéanaeighbour in common. Though the two points
of view are quite different, and the definitions termed dfely, the two notions are exactly the same.
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graphs, and that it actually is very large: in peer-to-pf®rinstance, on average half the pairs
of peers that have a common interest for a given data alsodasenmon interest for another

data. These values are much larger than the ones for themhgstoefficients in the previous

section, see Table 3, and the difference they make betweelomagraphs and real-world net-
works is much more significant. To this regard, it may be aber®d as a better generalisation
of clustering coefficients in 1-mode networks than the hifgaclustering coefficients defined in

Section 8.

The case of occurrences is different. the projections oh bites are very dense, which
is very particular as already noticed. The redundancy aeifii therefore is huge, but this is
not because of a property of how the neighbourhoods ovettiépis a direct consequence of the
high density of the projections. In such a case, the redurnydawefficient is meaningless, and we
will therefore not discuss this case any further in thisise¢tsimply notice that the redundancy
coefficient has similar behaviours in such graphs and im thedom equivalent.

real random real random| real random real random
re(T) ‘ 0.26 0.014 ‘0.38 0.0016 ‘0.80 0.74 ‘0.31 0.011

actors-moviej authoring occurrences | peer-to-peer

re(L) | 0.25 0.011 | 0.33 0.00037 | 0.83  0.75 | 0.50 0.069

Table 4: The redundancy coefficient for our four examplesfandandom bipartite graphs with
the same size and same degree distributions.

We show in Figure 10 the distributions of(tg for our four examples together with plots
for comparable random graphs. These plots confirm that tthendancy coefficient captures
a property that makes large real-world networks differeatnf random ones: in all the cases
except occurrences, the value of this coefficient in randmapls is almodi for all nodes (both
top and bottom); instead, in real-world networks it is sigaintly larger, and equal td for a
large portion of the nodes. This last fact is not surprisinge cq(v) = 1 implies rqv) = 1 for
all nodesv.

However, the redundancy coefficient has a much wider rangalags than c¢gv), which
generally is close t6 or 1, see Figure 6. Moreover, the redundancy coefficient captudiffer-
ent property: in the case of actors-movies, for instanagoés not only mean that a significant
number of movies have a cast that is a sub-cast of anotheerasicaptured by ¢tv)), but that
when two actors act together in a movie then there oftensefastieast) another movie in which
they also act together. Both are interesting, and compleamgerbut the redundancy coefficient
certainly captures a more general feature.

Let us now observe the correlations between node redundangfficient and their degree,
plotted in Figure 11. In these plots, except for occurrentesplots for the random graphs co-
incide with the x-axis, which confirms that the values of noeldundancy in random graphs are
very small, independently of node degrees. Real-worlds;asethe contrary, exhibit nontrivial
behaviours. In most cases, the redundancy decreases wittetree, which is not surprising
since the number of links needed in the projection in ordethe redundancy of a node to be
large grows with the square of its degree. However, the réaiucy remains large even for quite
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Figure 10: Cumulative distributions of the redundancy fioeit in our four real-world 2-mode
networks, and in random bipartite graphs of the same sizesame degree distributions. First
row: for top nodes. Second row: for bottom nodes.

large degrees: it is close tbl5 for nodes of degred0 for top nodes in actors-movies, for in-
stance, meaning that among tth possible pairs of neighbours of these nodes, on aveiage
are linked to another top node in common. This has a very l@batility in random graphs.
Likewise, one may notice that some very high degree nodes haery large redundancy coef-
ficient in several cases, which also is a significant inforomat
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Figure 11: Correlations of redundancy coefficient with ndegrees in our four real-world 2-
mode networks, and in random bipartite graphs of the saneeasid same degree distributions.
First row: for top nodes. Second row: for bottom nodes.

One may push further the study of the redundancy, for insthgecounting how many nodes

have an overlap with a given one, and so may be responsiblesfbigh redundancy. This is
nothing but the degree of the node in the appropriate piojgcivhich emphasises once again
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that our approach may be fruitfully combined with the onedolsn projection, as argued in
Section 3.

10 Conclusion and per spectives.

The core contribution of this paper is a set of rigorous argeoent statistical properties usable as
a basis for the analysis of large real-world 2-mode netwéwkswing the post-1998 approach.
These statistics go from the very basics (size, distan¢esta@subtle ones (typically various
clustering coefficients and their correlations with degjeelLet us insist on the fact that we
do not only extend classical notions to the bipartite caséalso develop new notions which
make sense only in this context. Moreover, the proposedoappravoids projection of 2-mode
networks into 1-mode ones, which makes it possible to grathmigher information. We hope
that this unified framework and discussion will help sigrifidy people involved in analysis of
such networks.

A first conclusion drawn from the computation of these sti@Bon four representative real-
world examples is that, just like large real-world 1-modénweks, they have nontrivial prop-
erties in common which make them very different from randatworks. In particular, there
is a high heterogeneity between degrees of nodes of at Ieagtind, and there are significant
overlaps between neighbourhoods. Concerning this lapepiy we show that immediate exten-
sions of the classical notions of clustering coefficientsrast sufficient to make the difference
between real-world networks and random graphs; we profesedtion ofredundancyas a rel-
evant alternative. Overall, these facts are strikinglgelto what is met in 1-mode networks and
should play a similar role. Conversely, we observed manpgnttes which behave differently
depending on the 2-mode network under concern, which maysed to describe a particular
instance in more details.

Notice that these contributions do not only concern the 2ienoetworks themselves, but
also their projection: keeping the bipartite nature of tagadnakes it possible to obtain more
precise information on the projection itself. For instarstatistics on degrees make it possible to
separate high degree nodes in the projection into two distiasses: the ones which are linked
to many nodes in the 2-mode network, and the ones linked teswothigh degree in the 2-mode
network. This kind of analysis could be deepened using etingl and redundancy notions.

Going further, one may use the notions we introduced herefio& new relevant statistics
on 1-mode networks. Indeed, any graph= (V, E) may be seen as a bipartite gragh =
(V,V, E) where the links are between twopiesof V. The statistics we studied here may then
be computed on this bipartite graph, leading to new insigithe original grapld.

There are many directions to improve and continue the woekgmted here. Among them,
let us cite the analytic study of the parameters we proposéchacan in particular be done
using the techniques in Newmat al., 2001b or in Robingt al, 2005. One might prove in
this way the expected behaviour of these parameters anel¢legir understanding. Another
direction is the developement of models of 2-mode netwodgwring the properties met in
practice. Just as is the case for 1-mode networks, much caore concerning degrees, see
Newmanet al, 2001a; Guillaume & Latapy, 2004a, but very little is knowsncerning the
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modeling of clustering and redundancy. Finally, applyihgse results to practical cases and
giving precise interpretations of their meanings in thefergnt contexts would probably help in
designing other relevant notions. To this regard, thestiedil properties described in this paper
may help in deepening the key questions about group formatid relations (like the emergence
of interlocking in company boards, see Robins & Alexand8f4£ Conyon & Muldoon, 2004;
Battiston & Catanzaro, 2004; Newmanal.,, 2001a or of scientific areas and communities, see
Roth & Bourgine, 2005; Morris & Yen, 2005; Newman, 2001a; Mean, 2001b; Newman,
2000), which we did not consider here.

Let us conclude by noticing that the field of large networklgsia is only at its beginning,
though much has been done, before and after 1998, on 1-moderks. However, most real-
world networks are directed, weighted, labelled, hybriaj/ar evolve during time. Some work
has recently been done concerning weighted networks (Betria., 2004; Barthélemyet al,
2005; Newman, 2004), and we propose here a contributionecoimg 2-mode networks. How-
ever, there is still much to do to be able to analyse efficyetitbse various kinds of networks.
Extending the notions we discussed here to the case of ranltg graphs (nodes are in sev-
eral disjoint sets, with links between nodes in differerts galy) would be a step further in this
direction.
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How to read and understand our plots.

We give in this appendix additional hints on how to read andeustand the plots presented in
this paper, for the readers who are not familiar with thea#@stical approaches. Of course, this
appendix will not replace a statistics textbook, but it amgiving sufficient intuition on the
notions under concern to help the reader significantly.

Distributions.

The main statistical notion used in this paper is the ordigifibutionof a measured quantity: it
is, for each possible value of this quantity, the fractiom, of objects which exhibit this value
when the quantity is measured on th&mFor instance, the degree distribution in a network is,
for each integek, the fraction of nodes of degrég(i.e. with & links).

One may consider theumberof objects in place of thiaction. Both notions of distributions
are strongly related, since the fraction is the number duaibdy the total number of objects. As
a consequence, the shape of the plot is exactly the samenlihdiierence lies in the rescaling
of the vertical axis (initially between 0 and the total numbkobjects, to between 0 and 1 after
rescaling). Both variants have their own advantages andgldreks. In this paper, we use the
fraction variant to make it easier to compare between different calssseasier to compare the
fact that in one network the fraction of degree one nodésié.e.50 % of the nodes have degree
one) and in another one it(s8 (i.e. 80 %) than the raw numbers.

In our context, the key property of the observed distrilmgis wether they aregomogeneous
or heterogeneous

The plot of an homogeneous distributidrhave a peak around an average value, and no
object with measured value very different from this avefdgeMore formally, the fraction of
objects with measured value p;, decreases exponentially fast when one goes away from the
average value. Intuitively, this means that no object ary déferent from the average case
concerning the observed value. This has important consegsein particular the fact that the
average is meaningful: it indicates thermalbehavior, or what one may expect when taking an
object at random.

On the contrary, some distributions are heterogen€otubere are several orders of magni-
tude between observed values, and there is a significant eruohlobjects for which the mea-
sured value is very different from the average one. In susbgp, decreases only polynomially
fast when one goes away from the average value, thus muclerstban in an homogeneous
distribution. Then, the average value brings little infatiman: it is not the value observed on
most objects, and a randomly chosen object may exhibit a difigrent value. In such cases,
characterising the heterogeneity of the distribution igenmoeaningful. This is generally done
by fitting the distribution with a power-lawpf ~ k£~ for a constant) and then considering the

22 e.the number of such objects divided by the total number ofaibje

Z3Most famous such distributions are normal, Gaussian anssBwian distributions.

24A typical example is body height: there is an average heaid,nobody is twice this value high.
25Most famous such distributions are Zipf and power-law distions.
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exponent of this power-law) as a measure of the heterogenity of the distribution (Iaxgio-
nents reveal higher heterogeneity, but the fact that theitalision is well fitted by a power-law
is sufficient to show that it is highly heterogeneous).

Notice that it is not immediate to determine if a given dlaition is well fitted by a power-
law: on usual plots, the difference between exponentialpaighomial decreases is not visible.
This is why, when one suspects the presence of a power-lawses log-log scales: instead of
plotting p;. as a function of one plotslog(px) as a function ofog(k). If the distribution is a
power-law, we have, ~ k%, and thudog(px) ~ —« - log(k). Therefore, the plot will be a
straight line of negative slope, which is easy to check. If the distribution has an expoménti
decrease, the log-log plot will not be a straight line.

On empirical data, of course, the fits are never perfect. Asroay observe on the plots of
this paper, however, the approach just described makesstlge to distinguish between several
cases. In Figure 2, for instance, in the case of occurrenesetathe bottom degree distribution
is very well fitted by a power-law, whereas the top degreeibigion certainly is not a power-
law. This confirms the immediate observation that, in thisegcdottom degrees span several
orders of magnitudes (fromto more than0000) whereas top degrees do not.

Cumulative distributions.

For several reasons, it is interesting in some situatiom®tsider thecumulativedistributions,
instead of classical distributions as described above:ptots the fraction of objects having a
measured valulwer than or equal tdk, for eachk, instead of the fraction of objects having
exactly this measured value.

This is particularily useful when one wants to observe trstrithiution of a property taking
real values, not only integer ones: it is sufficient to coesid finite number of points in the
plot. This is why we used cumulative distributions for ouotsl of clustering coefficients and
redundancy (Figures 6, 7 and 10). It also helps in estimatieghumber of nodes with high
clustering coefficients or redundancy, which is appealmiiis context.

Correlations.

Finally, we present in this paper another kind of plots, alraeobserving correlations between
different values attached to a same object (like the degreenode and the average degree of
its neighbors, in Figure 3). There are many way to investigaich correlations. We use here
plots in which we put a dot for each object, this dot havingrdowates given by the two values
of interest (in Figure 3, each node leads to a dot for whict the degree of the node apds
the average degree of its neighbors).

Such plots make it possible to observe if having a given viduene observed property is
related to having a given value for another one. In particuae may observe if having high
value for the first implies a high value for the second. In thsecof Figure 3, for instance, the
leftmost plot of the first row (top degree correlations fog Httors-movies network) shows that
in random networks the average degree of neighbors of a sad@apendent of the degree of the
node: it forms an horizontal line, indicating that it is a stant (roughly equal t82). Instead, in
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the same plot, one sees that for high degree nodes the awgge of their neighbors tends to
be smaller than for lower degree nodes, thus indicatinghigétdegree nodes are more linked to
low degree nodes than others (and more than if links wereorapdin terms of the underlying

data, it shows that if a movie has many actors, then many stthetors played in few movies
only.
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