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Abstract

Many large real-world networks actually have a 2-mode nature: their nodes may be sep-
arated into two classes, the links being between nodes of different classes only. Despite
this, and despite the fact that many ad-hoc tools have been designed for the study of spe-
cial cases, very few exist to analyse (describe, extract relevant information) such networks
in a systematic way. We propose here an extension of the most basic notions used nowa-
days to analyse large 1-mode networks (the classical case) to the 2-mode case. To achieve
this, we introduce a set of simple statistics, which we discuss by comparing their values
on a representative set of real-world networks and on their random versions. This makes it
possible to evaluate their relevance in capturing properties of interest in 2-mode networks.

Introduction.

A bipartite graph is a tripletG = (⊤,⊥, E) where⊤ is the set oftop nodes,⊥ is the set of
bottomnodes, andE ⊆ ⊤×⊥ is the set of links. The difference withclassicalgraphs lies in the
fact that the nodes are in two disjoint sets, and that the links always are between a node of one
set and a node of the other. In other words, there cannot be anylink between two nodes in the
same set.

Many large real-world networks of interest may be modeled naturally by a bipartite graph.
These networks are called2-mode networks, or affiliation networkswhen they represent groups
and members (i.e. each link represents a social actor’s affiliation to a group). Let us cite for
instance the actors-movies network, where each actor is linked to the movies he/she played in
(e.g., Watts & Strogatz, 1998; Newmanet al., 2001a), authoring networks, where the authors are
linked to the paper they signed (e.g., Newman, 2001a; Newman, 2001b), occurrence networks,
where the words occurring in a book are linked to the sentences of the book they appear in
(e.g., Ferrer & Solé, 2001), company board networks, where the board members are linked to
the companies they lead (e.g., Robins & Alexander, 2004; Conyon & Muldoon, 2004; Battiston
& Catanzaro, 2004), and peer-to-peer exchange networks in which peers are linked to the data
they provide/search (e.g., Le Fessantet al., 2004; Voulgariset al., 2004; Guillaumeet al., 2005;
Guillaumeet al., 2004).
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Although there is nowadays a significant amount of notions and tools to analyse (classical)
1-mode networks, there is still a lack of such results fittingthe needs for analysing 2-mode
networks. In such cases, one generally has to transform the 2-mode network into a 1-mode one
and/or to introduce ad-hoc notions. In the first case, there is an important loss of information, as
well as other problems that we detail below (Section 3). In the second case, there is often a lack
of rigor and generality, which makes the relevance of the obtained results difficult to evaluate.

The aim of this contribution is to provide a set of simple statistics which will make it possible
and easy to analyse real-world 2-mode networks (or at least make the first step towards this goal)
while keeping their bipartite nature.

To achieve this, we will first present an overview of the basicnotions and methodologies used
in the analysis of 1-mode networks. We will then show how people usually transform bipartite
networks into 1-mode networks in order to be able to analyse them with the tools designed for
this case. This will lead us to a description of the state of the art, then of the methodology used
in this paper. Finally, we will present and evaluate the statistics we propose for the analysis of
2-mode networks.

Before entering in the core of this contribution, let us notice that we only deal here with sim-
ple3, undirected, unweighted, static networks. Considering directed, weighted, and/or dynamic
networks is out of the scope of this paper; we will discuss this further in the conclusion. More-
over, in all the cases we will consider here (and in most real-world cases), the graph has a huge
connected component,i.e. there exists a path in the graph from almost any node to any other. In
the following, we will make our statistics on the whole grapheverywhere this makes sense, but
we will restrict ourselves to the largest connected component where this is necessary (namely for
distance computations). Again, this is classical in the literature and has no significant impact on
our results.

1 Classical notions.

Let us consider a (classical) graphG = (V, E), whereV is the set of nodes andE ⊆ V × V is
the set of links. We will denote byN(v) = {u ∈ V, (u, v) ∈ E} theneighbourhoodof a nodev,
the elements ofN(v) being theneighboursof v. The number of nodes inN(v) is thedegreeof
v: do(v) = |N(v)|.

The most basic statistics describing such a graph are its size n = |V |, its number of links
m = |E|, and its average degreek = 2m

n
. Its densityδ(G) = 2m

n(n−1)
, i.e. the number of existing

links divided by the number of possible links, also is an important notion. It is nothing but the
probability that two randomly chosen (distinct) nodes are linked together.

Going further, one may define the distance between two nodes in the graph as the minimal
number of links one has to follow to go from one node to the other. Note that this only make
sense if there is a path between the two nodes,i.e. if they are in the same connected component.
As explained above, in all the paper, we will only consider distances between the nodes in the

3This means that we do not allow loops (links from a node to itself) nor multiple links between two given nodes.
This is classical in studies of large networks: loops are managed separately, if some occur, and multiple links are
generally encoded as link weighs, or simply ignored.
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largest connected component (and we will give its size). Then, the average distance of the graph,
d(G), is nothing but the average of the distances for all pairs of nodes in the largest connected
component.

The statistics described above are the ones we will call thebasicstatistics. The next one
is not so classical. It is the degree distribution,i.e. for all integeri the fractionpi of nodes of
degreei. In other words, it is the probability that a randomly chosennode has degreei. One may
also observe the correlations between degrees, defined as the average degree of the neighbours
of nodes of degreei, for each integeri. Other notions concerning degrees have been studied, like
assortativity (Newman, 2003a) for instance, but we do not detail this here.

The last kind of statistics we will discuss here aims at capturing a notion of overlap: it
measures the probability that two nodes are linked together, provided they have a neighbour
in common. In other words, it is the probability that any two neighbours of any node are linked
together. This may be done using two slightly different notions, both calledclustering coefficient,
among which there often is a confusion in the literature4. Both will be useful in the following
therefore we discuss them precisely here.

The first one computes the probability, for any given node chosen at random, that two neigh-
bours of this node are linked together. It therefore relies on the notion of clustering coefficient
for any nodev of degree at least2, defined by:

cc•(v) =
|EN(v)|

|N(v)|(|N(v)|−1)
2

=
2|EN(v)|

do(v)(do(v) − 1)

whereEN(v) = E ∩ (N(v) × N(v)) is the set of links between neighbours ofv. In other words,
cc•(v) is the probability that two neighbours ofv are linked together. Notice that it is nothing
but the density of the neighbourhood ofv, and in this sense it captures the local density. The
clustering coefficient of the graph itself is the average of this value for all the nodes:

cc•(G) =

∑
v∈V

cc•(v)

|{v ∈ V, do(v) ≥ 2}|
.

One may define directly another notion of clustering coefficient ofG as a whole as follows:

cc∨(G) =
3N∆

N∨

whereN∆ denotes the number of triangles,i.e.sets of three nodes with three links inG, andN∨

denotes the number of connected triples,i.e. sets of three nodes with at least two links, inG.
This notion of clustering is slightly different from the previous one since it gives the probability,
when one chooses two links with one extremity in common, thatthe two other extremities are
linked together.

Both notions have their own drawbacks and advantages. The first one has the advantage of
giving a value for each node, which makes it possible to observe the distribution of this value and

4Some authors make a difference by calling the first notionclustering coefficientand the second onetransitivity
ratio, but we prefer to follow the most classical conventions of large network studies here.
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the correlations between this value and the degree, for instance. It however has the drawback of
reducing the role of high degree nodes. Moreover, importantly, these definitions capture slightly
different notions, which may both be relevant depending on the context. We will therefore use
both notions in the following. This is why we introduced two different notations, namely cc• and
cc∨, which emphasises the fact that one is centered on nodes and the other is centered on pairs
of links with one extremity in common.

One may consider many other statistics to describe large networks. Let us cite for instance
centrality measures, various decompositions, and notionscapturing the ability of each node to
spread information in the network. See Wasserman & Faust, 1994; Albert & Barabási, 2002;
Newman, 2003b; Bornholdt & Schuster, 2003; Brandes & Erlebach, 2005 for surveys from
different perspectives. We will not consider here such statistics. Instead, we will focus on the
most simple ones, described above, because they play a central role in recent studies of large
networks, which we call post-1998 studies, as we will explain in the next section.

2 One-mode large real-world networks.

Many large real-world networks have been studied in the literature, ranging from technological
networks (power grids, internet) to social ones (collaboration networks, economical relations),
or from biological ones (protein interactions, brain topology) to linguistic ones (cooccurrence
networks, synonymy networks). See Wasserman & Faust, 1994;Albert & Barabási, 2002; New-
man, 2003b; Bornholdt & Schuster, 2003; Brandes & Erlebach,2005 and references therein for
detailed examples.

It appeared recently (e.g., Watts & Strogatz, 1998; Albert & Barabási, 2002; Newman, 2003b;
Bornholdt & Schuster, 2003) that most of these large real-world networks have several nontrivial
properties in common. This was unexpected, and led to an important stream of studies, devel-
opping a new kind of network analysis which we will call post-1998 network analysis (as it
followed the seminal paper Watts & Strogatz, 1998). This section is devoted to an overview and
discussion of these properties (based on the definitions given in previous section), on which the
rest of the paper will rely. We will use the same notations as in Section 1.

We are concerned here with large networks only, which means thatn is large. In most real-
world cases, it appeared thatm is of the same order of magnitude asn, i.e. the average degree
k is small compared ton. Therefore, the density generally is very small:δ(G) = kn

n(n−1)
∼ k

n
,

which is close to0 sincen is much larger thank in general. We will always suppose we are in
this case in the following.

It is now a well known fact that the average distance in large real-world networks is in general
very small (small-worldeffect), even in very large ones, see for instance Milgram, 1967; Watts
& Strogatz, 1998. This is actually true in most graphs, sincea small amount of randomness is
sufficient to ensure this, see for instance Watts & Strogatz,1998; Kleinberg, 2000a; Kleinberg,
2000b; Bollobas, 2001; Erdös & Rényi, 1959. This property, though it may have important con-
sequences and should be taken into account, should therefore not be considered as a significant
property of a given network (see Section 5).

Another issue which received recently much attention, see for instance Faloutsoset al., 1999;
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Barabasi & Albert, 1999, is the fact that the degree distribution5 of most large real-world net-
works is highly heterogeneous, often well fitted by a power law: pk ∼ k−α for an exponentα
generally between2 and3.5. This means that, despite most nodes have a low degree, thereexists
nodes with a very high degree. This implies in general that the average degree is not a significant
property, bringing much less information than the exponentα which is a measurement of the
heterogeneity of degrees.

If one samples a random network with the same size (i.e.as many nodes and links) as a given
real-world one6, thus with the same density, then the obtained degree distribution is qualitatively
different: it follows a Poisson law. This means that the heterogeneous degree distribution is not
a trivial property, in the sense that it makes large real-world networks very different from most
graphs (of which a random graph is typical). The degree correlations and other properties on
degrees, however, behave differently depending on the network under concern.

Going further, the clustering coefficients (according to both definitions) are quite large in
most real-world networks: despite most pairs of nodes are not linked together (the density is
very low), if two nodes have a neighbour in common then they are linked together with a prob-
ability significantly higher than0 (the local density is high). However, the clustering coefficient
distributions, their correlations with degrees, and otherproperties related to clustering, behave
differently depending on the network under concern.

If, as above, one samples a random graph with the same size as an original one then the
two definitions of clustering coefficients are equivalent and equal to the density. The clustering
coefficients therefore are very low in this case. If one samples a random graph with the same
number of nodesand the very same degree distribution7 then the clustering coefficients still are
very small, close to0 (Newman, 2003b). Clustering coefficients therefore capture a property of
networks which is not a trivial consequence of their degree distribution.

Finally, it was observed that the vast majority of large real-world networks have a very low
density, a small average distance, a highly heterogeneous degree distribution and high cluster-
ing coefficients. These two last properties make them very different from random graphs (both
purely random and random with prescribed degree distribution). More subtle properties may be
studied, but until now no other one appeared to be a general feature of most large real-world
networks. The properties described here therefore serve, in most post-1998 studies, as a basis
for the analysis of large real-world networks, and so we willfocus on them in the following. Our
aim will be to define and discuss their equivalent for 2-mode networks / bipartite graphs.

5See the appendix, page 30 for more detailed definitions and hints on how to understand this kind of statistics.
6We consider here a network chosen uniformly at random among the ones having this size, using typically the

Erdös and Rényı́ model (Bollobas, 2001; Erdös & Rényi, 1959).
7We consider here a network chosen uniformly at random among the ones having this number of nodes and this

degree distribution, using typically theconfigurationmodel (Bender & Canfield, 1978; Bollobas, 2001; Molloy &
Reed, 1995; Molloy & Reed, 1998; Viger & Latapy, 2005.
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3 Projection.

Let us now consider a large 2-mode network modeled as a bipartite graphG = (⊤,⊥, E). The
⊥-projection ofG is the graphG⊥ = (⊥, E⊥) in which two nodes (of⊥) are linked together if
they have at least one neighbour in common (in⊤) in G: E⊥ = {(u, v), ∃x ∈ ⊤ : (u, x) ∈
E and(v, x) ∈ E}. The⊤-projectionG⊤ is defined dually. See Figure 1 for an example.
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Figure 1: An example of bipartite graph (center), together with its ⊤-projection (left) and its
⊥-projection (right).

In order to be able to use the many notions defined on 1-mode networks, and to compare a par-
ticular network to others, one generally transforms a 2-mode network into its⊥-projection, often
called the one-mode version of the network. This was typically done for the 2-mode networks
we presented in the introduction: the actors-movies network is transformed into its⊥-projection
where two actors are linked if they acted together in a movie (e.g., Watts & Strogatz, 1998); the
authoring networks are transformed into their⊥-projections,i.e. coauthoring networks where
two authors are linked if they signed a paper together (e.g., Newman, 2001a; Newman, 2001b;
Newmanet al., 2001a); the occurrence networks are transformed into their ⊥-projections,i.e.
cooccurrence networks where two words are linked if they appear in the same sentence (e.g., Fer-
rer & Solé, 2001); the company board networks are transformed into their⊥-projections where
two persons are linked together if they are member of a same board (e.g., Robins & Alexander,
2004; Conyon & Muldoon, 2004; Battiston & Catanzaro, 2004; Kogut & Walker, 2003; Kogut
et al., 2006); and the peer-to-peer exchange networks are transformed into their⊥-projections
where two data are linked together if they are provided/searched by a same peer (e.g., Le Fessant
et al., 2004; Voulgariset al., 2004; Guillaumeet al., 2005; Guillaumeet al., 2004).

This approach is of course relevant since the projections under study make sense, and also
encode much information. Moreover, this allows the study of2-mode networks using the pow-
erful tools and notions provided for classical, 1-mode, networks. We however argue that in most
cases there would be a significant gain in considering the bipartite version of the data. The main
reasons are as follows.

• Most importantly, there is much information in the bipartite structure which may disappear
after projection. For instance, the fact that two actors played in many movies together, and
the size of these movies, brings much information which is not available in the projection,
in which they are simply linked together. This loss of information is particularly clear when
one notices that there are many bipartite graphs which lead to the same projection (while
each bipartite graph has only one⊤- and one⊥-projection), see Guillaume & Latapy,
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2004b; Guillaume & Latapy, 2004a. The fact that much important information is encoded
in the bipartite structure is a central point which we will illustrate all along this paper.

• Notice that each top node of degreed inducesd(d−1)
2

links in the⊥-projection, and con-
versely. This induces an inflation of the number of links whenone goes from a bipartite
gaph to its projection, see Table 1. In our examples, this is particularly true for peer-to-
peer: the number of links reaches more than10 billions in the⊥-projection, which needs
more than80 GigaBytes of central memory to be stored using classical (compact) encod-
ings (while the original 2-mode network needs less than500 MegaBytes). This is a typical
case in which the huge number of links induced by the projection is responsible for limi-
tations on the computations we are able to handle on the graphin practice.

actors-movies authoring occurrences peer-to-peer
Number of links inG 1,470,418 45,904 183,363 55,829,392
Number of links inG⊥ 15,038,083 29,552 392,066 10,142,780,673
Number of links inG⊤ 20,490,112 134,492 51,405,275 1,085,217,140

Table 1: Number of links in 2-mode networks and their projections, for the four examples we
will describe in Section 5.

• Finally, some properties of the projection may be due to the projection process rather than
the underlying data itself. For instance, it is shown in Newmanet al., 2001a; Guillaume
& Latapy, 2004b; Guillaume & Latapy, 2004a that when considering the projection of a
random bipartite graph, one observes high clustering coefficients. Therefore, high clus-
tering coefficients in projections may not be viewed as significant properties: they are
consequences of the bipartite nature of the underlying 2-mode network. Likewise, the pro-
jection may lead to very dense networks, even if the bipartite version is not dense; this is
particularly the case here for the⊤-projection of occurrences.

One way to avoid some of these problems is to use aweightedprojection. For instance, the weight
of a link (u, v) between two bottom nodes in the weighted⊥-projection may be defined as the
number of (top) neighboursu andv have in common in the bipartite graph. Other definitions
may be considered: each top node may contribute to each link it induces in the⊥-projection in
a way that decreases with its degree, for instance. In all cases, and despite such an approach is
relevant and promising, one still loses a significant amountof information, and one transforms
the problem of analysing a bipartite structure into the problem of analysing a weighted one,
which is not easier. Indeed, despite the fact that importantprogress has recently be done in this
direction (Barratet al., 2004; Barthélemyet al., 2005; Newman, 2004), much remains to be done
before being able to analyse precisely the structure of weighted networks.

Our aim in this paper is to provide an alternative to the projection approach, leading to a
better understanding of 2-mode networks. It must however beclear that (weighted) projection
approachs also lead to significant insight, and we consider that the two approaches should be
used as complementary means to understand in details the properties of 2-mode networks.
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4 State of the art.

Two-mode networks have been studied in an amazingly wide variety of context. Let us cite for
instance company boards (e.g., Robins & Alexander, 2004; Conyon & Muldoon, 2004; Battiston
& Catanzaro, 2004; Newmanet al., 2001a), sport teams (e.g., Bonacich, 1972; Onody & de Cas-
tro, 2004), movie actors (e.g., Watts & Strogatz, 1998; Newmanet al., 2001a), management
science (e.g., Kogut & Walker, 2003; Kogutet al., 2006), human sexual relations (e.g., Ergun,
2002; Lindet al., 2005), attendance to events (e.g., Faustet al., 2002; Freeman, 2003), finan-
cial networks (e.g., Caldarelliet al., 2004; Dahuiet al., 2005; Garlaschelliet al., 2004; Young-
Choon, 1998), recommandation networks (e.g., Peruginiet al., 2003), theatre performances (e.g.,
Agneessenset al., 2004; Uzzi & Spiro, 2005), politic ativism (e.g., Boudourides & Botetzagias,
2004), student course registrations (e.g., Holmeet al., 2004), word cooccurrences (e.g., Dhillon,
2001; Véronis & Ide, 1995), file sharing (e.g., Iamnitchiet al., 2004; Le Fessantet al., 2004;
Voulgariset al., 2004; Guillaumeet al., 2005; Guillaumeet al., 2004), and scientific author-
ing (e.g., Roth & Bourgine, 2005; Morris & Yen, 2005; Newman, 2001a; Newman, 2001b;
Newman, 2000).

These studies are made in disciplines as various as social sciences, computer science, lin-
guistics and physics, which makes the literature very rich.In all these contexts, scientists face
2-mode networks which they try to analyse, with various motivations and tools. They all have
one feature in common: they insist on the fact that the bipartite nature of their data plays an
important role, and should be taken into account. They also emphasise the lack of notions and
tools for doing so.

Because of this lack of relevant notions and tools, most authors have no choice but to con-
sider the most relevant projection of their 2-mode network.This leads for instance to studies of
interlocks between companies, see Robins & Alexander, 2004; Conyon & Muldoon, 2004, stud-
ies of coauthoring networks, see Newman, 2001a; Newman, 2001b; Newman, 2000, or studies
of exchanges between peers in peer-to-peer systems, see Le Fessantet al., 2004; Voulgariset al.,
2004; Guillaumeet al., 2005; Guillaumeet al., 2004.

Many authors realise that this approach is not sufficient, and try to use the bipartite nature
of their data. This is generally done by combining the use of projections and the use of basic
bipartite statistics, mostly degrees. For instance, one studies the coauthoring relations (typically
a projection) and the distributions of the number of papers signed by authors and of the number of
authors of papers (i.e. the bipartite degree distributions, see Section 6) (Newman, 2000). Authors
may also consider weighted projections, see for instance Battiston & Catanzaro, 2004; Morris
& Yen, 2005; Guillaumeet al., 2004; Guillaumeet al., 2005; Iamnitchiet al., 2004; Newman,
2000, which has advantages and drawbacks, as discussed in Section 3.

Going further, some authors introduce bipartite notions designed for the case under study.
This is often implicit and restricted to very basic properties, like the case of degree distributions
cited above (which essentially capture the size ofevents, and the number of events in whichper-
sonsor objectsare involved, in most cases). But some authors introduce more subtle notions, like
notions of overlap (Bonacich, 1972), clustering (Borgatti& Everett, 1997; Robins & Alexander,
2004; Lindet al., 2005), centrality measures (Faust, 1997), degree correlations (Peltomaki &
Alava, 2005), and others (Young-Choon, 1998; Ergun, 2002; Caldarelli et al., 2004; Perugini
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et al., 2003; Iamnitchiet al., 2004; Borgatti & Everett, 1997; Robins & Alexander, 2004; Lind
et al., 2005). Most of these notions are ad hoc and specific to the case under study, but some of
them actually are very general or may be generalised. One of our central aims here is to give a
complete and unified framework for the most general of these notions. We will cite appropriate
references when the notions we will discuss have already been considered previously.

As already said, a different and interesting approach is developed in Newmanet al., 2001a;
Guillaume & Latapy, 2004b; Guillaume & Latapy, 2004a. The authors study the expected prop-
erties of the projections given the properties (namely the degree distributions) of the underlying
bipartite graph. They show in particular that the expected clustering coefficient in the projections
is large, and give an efficient estimation formula; this means that a high clustering coefficient
in a projection may be seen as a consequence of the underlyingbipartite structure rather than
a specific property of the network. Conversely, if the clustering coefficient of the projection
is different from the expected one, it means that the underlying bipartite structure has nontrivial
properties responsible for it. These properties should therefore be further analysed. Our aim here
is to propose notions and tools for such an analysis. This approach has been used with profit in
several cases, see for instance Newmanet al., 2001a; Newmanet al., 2002; Conyon & Muldoon,
2004; Uzzi & Spiro, 2005.

Finally, a significant effort has already been made to achieve the goal we have here, or similar
goals: some studies propose general approaches for the analysis of 2-mode networks. This is
for instance the case of Faust, 1997, focused on centrality measures, of Breiger, 1974, which
proposes to consider both projections and compare them, andof Bonacich, 1972, which studies
in depth the notion of overlap.

Let us cite in particular Borgatti & Everett, 1997, which hasthe very same aim as we have
here, but belongs to what we callclassical, or pre-1998, social network analysis. In particular,
they do not use the comparison with random graphs, central toour contribution (see Section 5),
which probably reflects the fact that this method was not as usual in 1997 as it is now. For the
same reasons, they do not deal with clustering questions, which play a key role here. On the
other hand, they address some important issues (like visualisation) which we consider as out of
the scope of our contribution. It is interesting to see that,although the initially claimed aim is
very similar, the final contributions are significantly different.

Other researchers propose formalisms suited for the analysis of 2-mode networks, often based
on a generalisation of well known models. Let us cite Galois lattices (e.g., Roth & Bourgine,
2005), correspondence analysis (e.g., Jr., 2000; Faust, 2005), extensions of blockmodels (e.g.,
Borgatti & Everett, 1992; Doreianet al., 2004) and p* models (e.g., Skvoretz & Faust, 1999;
Faustet al., 2002; Agneessenset al., 2004) and a particularly original approach based on boolean
algebra in Bonacich, 1978.

Therefore, there already exists quite an impressive amountof work on 2-mode networks,
and on methods for their analysis. However, we observe that many of the approaches proposed
previously, though very relevant, are hardly applicable tolargenetworks, typically networks with
several hundreds of thousands nodes. Moreover, they often rely on quite complex notions and
formalisms, which are difficult to handle for people only interested in analysing a given network.
Finally, none of them consists in a generalisation of the post-1998 notions outlined in Section 1,
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which are nowadays widely used to analyse 1-mode networks.
We propose here such a contribution. We design simple notions and methods to analyse

very large 2-mode networks, which could be used as a first stepin particular studies. These
methods may then be extended to fit the details of particular cases, and we explain how to do
so. Moreover, they are not only extensions of classical notions; we go further by proposing new
notions designed specifically for the bipartite case. Our approach may also be applied to smaller
networks, as long as they are not too small (typically thousands of nodes).

As explained above, the topic has a deep interdisciplinary nature. In order to make our
techniques usable by a wide audience, we give a didactic presentation and we focus on basic
notions. Let us insist however on the fact that this presentation is rigorous and formal, and,
as will appear all along the paper, the results are sufficientto bring a significant amount of
information on a given network.

Finally, we insist on the fact that analysing properly and indetails a given network is a
difficult task, which may be handled using different methods. There is no unique way to obtain
relevant information and results in such cases. Moreover, much resides in the interpretations
made from the outputs of these approaches. All the ones we have cited above, and the one we
propose here, should therefore be seen as complementary rather than concurrent.

Let us conclude this section by noticing that, because of thewide dispersion of contributions
due to the interdisciplinary nature of the topic (and the fact that it received continuous attention
since several decades), we certainly missed some references. We however expect that the ones
we have cited span well the contributions on the topic.

5 Methodology and data.

As already said, the methodology we follow has mainly been developped since the publication
of the seminal paper Watts & Strogatz, 1998, and thus we call it the post-1998 approach. It
relies on the introduction of statistical parameters aimedat capturing a given feature of networks
under concern, and then on the comparison of the behaviours of real-world networks concerning
these parameters as compared to random ones8. The underlying principle is that a parameter
which behaves similarly on real-world and random networks is just a property ofmostnetworks
(of which random networks are representatives) and so, though it may play an important role,
it should not be considered as surprising and meaningful concerning the description of the real-
world network. Instead, one generally looks for propertieswhich make real-world networks
different from most networks.

Our contribution here relies on this methodology. Namely, we will define statistical param-
eters aimed at capturing properties of bipartite graphs, and then evaluate the relevance of these
parameters by comparing their values on random bipartite graphs and on real-world 2-mode net-
works.

8In the whole paper, the termrandomrefers to object chosen uniformly at random in the given class: every
element of the class has the same probability to be chosen. For descriptions on how to generate such graphs, we
refer to Erdös & Rényi, 1959; Bollobas, 2001; Newmanet al., 2001a; Guillaume & Latapy, 2004b; Viger & Latapy,
2005.
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Just like one considers purely random graphs and random graphs with prescribed degree
distributions in the case of 1-mode networks, we will use both purely random bipartite graphs
and random bipartite graphs with prescribed degree distributions. Such graphs are constructed
easily by extending the 1-mode case, see for instance Newmanet al., 2001a; Guillaume & Latapy,
2004b9. Note that these models (both the 1-mode and 2-mode versions) generate graphs that are
not necessarilysimple: they may contain some loops and multiple links. There are however very
few such links, and simply removing them generally has no impact on the results. This is what is
generally done in the literature, and we will follow this convention here: in our context, it cannot
have a significant impact10.

Notice also that the properties of random graphs may be formally studied, see for instance
Newmanet al., 2001a; Guillaume & Latapy, 2004a. One may also evaluate themean prop-
erties of these graphs, and their standard deviations, using typically approaches like the ones
developped in the p-star or ERGM (exponential random graph models) frameworks (e.g., Robins
et al., 2005)11. However, our purpose here is only to identify properties that make real-world
data different from random ones, not to quantify these differences precisely. We will therefore
only compare empirical data to a typical random graph of the considered class (the fact that
it is typical was checked by reproducing many times our experiments, which led to the same
observations), and leave these investigations for furtherwork, see Section 10.

In order to complete our comparison between random and real-world cases, we also need a
set of real-world 2-mode networks. We chose the following four instances, which correspond to
the examples given in the introduction and have the advantage of spanning well the variety of
cases met in practice:

• theactors-moviesnetwork as obtained from theInternet Movie Data Base12 in 2005, con-
cerningn⊥ = 127,823 actors andn⊤ = 383,640 movies, withm = 1,470,418 links;

• an authoringnetwork obtained from the onlinearXiv preprint repository13, with n⊤ =
19,885 papers,n⊥ = 16,400 authors, andm = 45,904 links;

• an occurrencegraph obtained from a version of the Bible14 which containsn⊥ = 9,264
words andn⊤ = 13,587 sentences withm = 183,363 links;

• apeer-to-peerexchange network obtained by registering all the exchangesprocessed by a
large server during 48 hours (Guillaumeet al., 2005; Guillaumeet al., 2004), leading to
n⊤ = 1,986,588 peers,n⊥ = 5,380,546 data, andm = 55,829,392 links;

9We provide a program generating such graphs athttp://jlguillaume.free.fr/www/programs.
php

10One may also use the methods described in Viger & Latapy, 2005to obtain directly simple (connected) graphs,
but this is more intricate, and unnecessary in our context.

11Seehttp://www.sna.unimelb.edu.au/pnet/pnet.html and http://csde.washington.
edu/statnet/ .

12Seehttp://www.imdb.com/ .
13Seehttp://arxiv.org/ .
14Seehttp://www.tniv.info/bible/ .
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We provide these data, together with the programs computingthe statistics described in this
paper15. The key point here is that this dataset spans quite well the variety of context in which
large 2-mode networks appear, as well as the variety of data sizes.

Let us insist on the fact that our aim here is not to derive conclusions on these particular
networks: we only use them as real-world instances to illustrate the use of our results and to
discuss their generality. This is why we do not detail more the way they are gathered and their
relevance to any study. This is discussed in various references and is out of the scope of this
paper.

6 Basic bipartite statistics.

The basic statistics on bipartite graphs are direct extensions of the ones on classical (1-mode)
graphs. One just has to be careful with the fact that some classical properties give birth to twin
bipartite properties while others must be redefined.

Let us consider a bipartite graphG = (⊤,⊥, E). We denote byn⊤ = |⊤| andn⊥ = |⊥| the
numbers of top and bottom nodes, respectively. We denote bym = |E| the number of links in
the network. This leads to a top average degreek⊤ = m

n⊤

and a bottom onek⊥ = m

n⊥

. One may

obtain the average degree in the graphG′ = (⊤ ∪ ⊥, E) ask = 2m

n⊤+n⊥

= n⊤k⊤+n⊥k⊥

n⊤+n⊥

. Finally,
we obtain the bipartite densityδ(G) = m

n⊤n⊥

, i.e. the fraction of existing links with repect to
possible ones. Note that this is different from the density of G′: δ(G′) = 2m

(n⊤+n⊥)(n⊤+n⊥−1)
,

which is much lower.
Concerning the average distance (again, we restrict distance computations16 to the largest

connected component (denoted bylcc), which contains the vast majority of nodes, see Table 2),
there is no crucial difference except that one may be interested by the average distance between
top nodes and between bottom nodes,d⊤ andd⊥. These values may be significantly different
but one may expect that they are very close since a path between two top (resp. bottom) nodes
is nothing but a path between bottom (resp. top) nodes with two additionnal links. Notice that
there is no simple way to derive the average distanced in G′ from the bipartite statisticsd⊥ and
d⊤.

The values obtained for each of these basic properties on ourfour examples, together with
values obained for random bipartite networks with the same size, are given in Table 2. It appears
clearly that our examples may be considered as large networks with small average degrees, com-
pared to their size. The density therefore is small. Moreover, the average distance is also small.
These basic properties are very similar to what is observed on 1-mode networks: both 1-mode
and 2-mode large real-world networks are sparse and have a small average distance, and in both
contexts this is also true on random graphs.

15Seehttp://www.liafa.jussieu.fr/˜latapy/Bip/ .
16Distance computations are expensive; the exact value cannot be computed in a reasonable amount of time for

data of the size we consider here. Instead, we approximate the average by computing the average distance from a
subset of the nodes to all the others, this subset being largeenough to ensure that increasing it does not improve our
estimation anymore, which is a classical method. All other computations are exact.

12



actors-movies authoring occurrences peer-to-peer
real random real random real random real random

n⊤ 127,823 idem 19,885 idem 13,587 idem 1,986,588 idem
n⊥ 383,640 idem 16,400 idem 9,264 idem 5,380,546 idem
m 1,470,418 idem 45,904 idem 183,363 idem 55,829,392 idem
k⊤ 11.5 idem 2.3 idem 13.5 idem 28.1 idem
k⊥ 3.8 idem 2.8 idem 19.8 idem 10.4 idem
k 5.7 idem 2.5 idem 16.0 idem 15.2 idem
δ 0.000030 idem 0.00014 idem 0.0015 idem 0.0000052 idem
lcc⊤ 124,414 125,944 16,209 18,512 13,579 13,587 1,986,343 1,426,978
lcc⊥ 374,511 381,431 11,654 14,607 9,246 9,264 5,380,507 5,054,689
d⊤ 6.8 5.3 13.1 9.3 3.1 3.0 5.3 5.0
d⊥ 7.3 5.8 13.9 9.9 3.8 3.7 5.4 4.9
d 7.2 5.8 13.5 9.6 3.4 3.2 5.3 4.9

Table 2: Basic bipartite statistics on our four examples andon random bipartite graphs with the
same size (same number of nodes and links, and thus same density and average degree as the
real-world ones).

7 Bipartite statistics on degrees.

The notion of degree distribution has an immediate extension to the bipartite case. We denote by
⊥i the fraction of nodes in⊥ having degreei and by⊤i the fraction of nodes in⊤ having degree
i, and then call(⊥i)i≥0 the bottom degree distribution and(⊤i)i≥0 the top one. See the appendix,
page 30, for more detailed definitions and hints on how to understand this kind of statistics.
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Figure 2: Degree distributions in our four real-world 2-mode networks. First row: for top nodes.
Second row: for bottom nodes.

The top and bottom degree distributions of our four examplesare given in Figure 2. One may
observe on these plots that the bottom degree distributionsare very heterogeneous and well fitted
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by power laws (of various exponents). This is true in particular for the occurrences graph, which
is a well known fact for a long time (Zipf, 1932): the frequency of occurrences of words in a
text generally follows a particular kind of power law, namedZipf law. Instead, the shape of the
top degree distribution depends on the case under concern: whereas it is well fitted by a power
law in the peer-to-peer and actors-movies cases, it is far from a power law in the authoring and
occurrences cases. This is due to the fact that papers have a limited number of authors (none
has one hundred authors for instance), and likewise sentences have a limited number of words.
Moreover, the number of very short sentences also is not huge. In these two cases, one can hardly
conclude that the top degrees are very heterogeneous.

We finally conclude that, even if heterogeneity is present onat least one side of a 2-mode
network, this is not generally true for both sides. This separates real-world 2-mode networks
into two distinct classes, which should be taken into account in practice. This also confirms that
considering the bipartite statistics brings significant information as compared to the projections,
which exhibit power law degree distributions in all cases.

Let us now compare these real-world statistics with random graphs. If one generates purely
random bipartite graphs of the same size as the ones considered here, the (⊤ and⊥) degree
distributions are Poisson laws. Therefore, the heterogenity of some degree distributions is not
present, and even in the cases where the distributions are not very heterogeneous they do not fit
the random case. We will therefore compare in the following our real-world 2-mode networks to
random bipartite graphs with the same size and the same (top and bottom) degree distributions.

The next natural step is to observe possible correlations17 between top and bottom degrees.
In order to do this, we plot in Figure 3 the average degree of neighbours of nodes as a function of
their degree, both for top and bottom nodes, separately. In other words, for each integeri we plot
the average degree of all nodes which are neighbours of a nodeof degreei. We plot the same
values obtained for random graphs of the same size and same degree distributions.

In the cases of actors-movies and peer-to-peer, the plots for the random cases are close to
horizontal lines, showing that there are no correlations between a node degree and the average
degree of its neighbours: this last value is independent of the node degree. In both cases, how-
ever, the real-world network displays nontrivial correlations. In the case of actors-movies, for
instance, the average degree of neighbours of bottom nodes (the lower-left corner plot in Fig-
ure 3) decreases with the node degree. In other words, if an actor plays in many movies then
he/she tends to play in smaller movies (in terms of the numberof involved actors). Such nontriv-
ial observations may be made on the other plots for actors-movies and peer-to-peer as well.

In the cases of authoring and occurrences, the plots for the random graphs are nontrivial:
they grow for the top statistics, and are far from smooth for the bottom ones. Here again, the
real-world cases exhibit significantly different behaviours, at least for the top statistics, thus
demonstrating that these behaviours are nontrivial and related to intrinsinc properties of the un-
derlying networks. Detailing this however is out of the scope of this paper. The key point here is
to have evidence of the relevance of these statistics.

Notice that, despite they already bring much information, the statistics observed until now
are almost immediate extensions of the classical ones. One may wonder if the bipartite nature of

17See the appendix, page 30 for more detailed definitions and hints on how to understand this kind of statistics.
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Figure 3: Degree correlations in our four real-world 2-modenetworks, and in random bipartite
graphs of the same size and same degree distributions. Firstrow: for top nodes. Second row:
for bottom nodes.

the networks under concern may lead to entirely new notions concerning degrees. We propose
one below, with its variants.

Let us consider a nodev in a bipartite graphG = (⊤,⊥, E), and let us denote byN(N(v))
the nodes at distance2 from v, not includingv, calleddistance2 neighboursof v. We will
suppose thatv is a top node, the other case being dual. Notice thatN(N(v)) ⊆ ⊤, and actually
N(N(v)) is nothing butN(v) in the⊤-projectionG⊤. The integer|N(N(v))| therefore plays a
central role in the projection approach, since it is the degree ofv in G⊤.

But there are several ways forv to be linked to the nodes inN(N(v)), this information being
lost during the projection. The two extreme cases occur whenv is linked to only one nodeu
in ⊥, with N(u) = N(N(v)), or whenv is linked to|N(N(v))| nodes in⊥, each being linked
to only one other node in⊤. Of course, intermediate cases may occur, and the actual situation
may be observed by plotting the correlations between the degree of nodesv, i.e. |N(v)|, and
their number of distance2 neighbours,|N(N(v))|. These statistics therefore offer a way to study
how node degrees in the projection appear, and to distinguish between different behaviours. For
instance, they make it possible to say if a given author has many coauthors because he/she writes
many papers or if he/she writes papers with many authors. Such an information is not available
in the projection of the authoring 2-mode network.

The plots in Figure 4 show that, as one may have guessed, the number of distance2 neigh-
bours of a node grows with its degree; more precisely, it generally grows as a power of the degree
(the plots follow straight lines in log-log scale), and actually almost linearly. This is in confor-
mance with the intuition that the number of distance2 neighbours should be close to the degree
of the node times the average degree of its neighbours. In therandom cases, this leads to very
straight plots (except in the top plot of occurrences). The real-world plots are quite close to the
random ones, with a few notable exceptions: the slope of the plot is significantly different for the
top plot of peer-to-peer, the real-world plots often are significantly below the random ones for
large degrees, and they are in general slightly lower than the random ones even for small degrees.

15



actors-movies authoring occurrences peer-to-peer

 1

 10

 100

 1000

 10000

 1  10  100  1000
 1

 10

 100

 1  10
 100

 1000

 10000

 100000

 1  10  100
 10

 100

 1000

 10000

 100000

 1e+06

 1  10  100  1000  10000 100000

 10

 100

 1000

 10000

 100000

 1  10  100  1000
 1

 10

 100

 1000

 1  10  100
 10

 100

 1000

 10000

 1  10  100  1000  10000 100000
 100

 1000

 10000

 100000

 1e+06

 1  10  100  1000  10000

Figure 4: Correlations of the number of distance2 neighbours with node degrees in our four
examples, and in random bipartite graphs with the same size and degree distributions. First row:
for top nodes. Second row: for bottom nodes.

This means that there is some redundancy in the neighbourhoods: whereas in random cases the
number of distance2 neighbours is close to the sum of the degrees of the direct neighbours,
in real-world cases the direct neighbours have many neighbours in common and so the number
of distance2 neighbours is significantly lower. This is an important feature of large real-world
networks, that we will deepen in the next sections.

8 Bipartite clustering and overlap.

Whereas there were quite direct extensions of the basic statistics and the ones on degrees to the
bipartite case, the notion of clustering coefficient does not make any sense in itself in this context.
Indeed, it relies on the enumeration of the triangles in the graphs, and there can be no triangle in a
bipartite graph. We will therefore have to discuss the features captured by the classical clustering
coefficients in order to propose bipartite extensions.

Both definitions of classical clustering coefficients capture the fact that when two nodes have
something in common (one neighbour) then they are linked together with a probability much
higher than two randomly chosen nodes. Conversely, they capture the fact that when two nodes
are linked together then they probably have neighbours in common. In other words, they capture
correlations between neighbourhoods. We will use this point of view here and define a first
notion of clustering coefficient defined for pairs of nodes (in the same set⊤ or⊥):

cc•(u, v) =
|N(u) ∩ N(v)|

|N(u) ∪ N(v)|
.

This is the most direct generalisation of the classical notion, and it was already suggested in
Borgatti & Everett, 1997, and explicitely used in Guillaumeet al., 2005 in the context of peer-
to-peer exchange analysis. It captures the overlap betweenneighbourhoods of nodes: ifu andv

16



have no neighbour in common then cc•(u, v) = 0. If they have the same neighbourhood, then
cc•(u, v) = 1. And if their neighbourhoods partially overlap then the value is in between, closer
to 1 when the overlap is large compared to their degrees. See Figure 5 for an illustration.

This definition however has several drawbacks. The first one is the fact that it defines a value
for pairs of nodes. One may want to capture the tendency ofoneparticular node to have its
neighbourhood included in the ones of other nodes. To achieve this, one may simply define the
clustering coefficient of one node as the average of its clustering coefficients with other nodes.
We however do not include in this averaging the pairs for which the overlap is empty18: most
nodes have disjoint neighbourhood, which does not bring information. Like in the 1-mode case,
we want to measure the implication of the fact of having one neighbour in common on the rest
of the neighbourhoods. We finally obtain:

cc•(u) =

∑
v∈N(N(u)) cc•(u, v)

|N(N(u))|

One may then observe the distribution of these values, theircorrelations with degrees, etc. One
may also define the clustering coefficient of the top (resp. bottom) nodes, denoted by cc•(⊤)
(resp. cc•(⊥)) as the average of this value over top (resp. bottom) nodes. The average over the
all graph, denoted by cc•(G), can then be obtained easily: cc•(G) = n⊤cc•(⊤)+n⊥cc•(⊥)

n⊤+n⊥

. We will
discuss the obtained values below, see Table 3.

The notion of clustering coefficient discussed until now is an extension of the first classical
one. It captures the fact that a node which has a neighbour in common with another node gener-
ally has a significant portion of neighbours in common with it. There is another way to capture
this, similar to the second definition of classical clustering coefficient, is to measure the proba-
bility that, given four nodes with three links, they actually are connected with four links (all the
possible bipartite ones):

ccN(G) =
2N⋊⋉

NN

whereN⋊⋉ is the number of quadruplets of nodes with four links inG, andNN is the number of
quadruplets of nodes with at least three. This extension of the second notion of classical clus-
tering coefficient was already proposed in Robins & Alexander, 2004 in the context of company
board networks. It is a natural generalisation of the clustering coefficientcc∨ on classical (1-
mode) graphs: this last notion is the probability, when three nodes are linked in a chain (with two
links), that they form a triangle; the ccN notion is nothing but the probability, when four nodes
are linked in a chain (with three links), that they form a square. This extension is natural since
there cannot be any triangle in bipartite graphs. We will discuss the obtained values below, see
Table 3.

The two notions above generalise the classical definitions of clustering coefficients. Captur-
ing the overlap between neighbours may however need more precision. Suppose that degrees are
heterogeneous in the network, as it is often the case (Section 7), and consider two nodesu andv.

18As a consequence, the obtained value will never be0, but it may be very small. Notice also that the clustering
coefficient is not defined for nodesv such thatN(N(v)) = ∅ (recall that, by definition,v 6∈ N(N(v)).
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If one of these nodes has a high degree and the other has not, then cc•(u, v) will necessarily be
small. This will be true even if one of the neighbourhoods is entirely included in the other. One
may however want to capture this, which can be done using the following definition:

cc•(u, v) =
|N(u) ∩ N(v)|

min (|N(u)|, |N(v)|)
.

One may define dually:

cc•(u, v) =
|N(u) ∩ N(v)|

max (|N(u)|, |N(v)|)
.

See Figure 5 for an illustration. These two notions, called min- and max-clustering, were intro-
duced first in Guillaumeet al., 2005. The first one emphasises on the fact that small neighbour-
hoods may intersect significantly large ones; it is equal to1 whenever one of the neighbourhoods
is included in the other. The second one emphasises on the fact that neighbourhoods (both small
or large ones) may overlap very significantly: it is1 only when the two neighbourhoods are the
same and it tends to decreases rapidly if the degree of one of the involved nodes increases. It
captures the fact that nodes withsimilar degrees have high neighbourhood overlaps.

vu vu vu

Figure 5: Examples of bipartite clustering coefficients, and interpretations. Left: a case in which
cc•(u, v) = 2

6
= 0.333 · · · is quite small, despite the fact thatu and v have two neighbours

in common, due to the fact that the union of their neighbours is quite large; on the contrary,
cc•(u, v) = 2

3
= 0.666 · · · is quite large, revealing that one of the neighbourhoods is almost

included in the other; the value of cc•(u, v) = 2
5

= 0.4 indicates that this may be due to the
fact that one of the nodes has a high degree. The situation is different in the case at the center:
all clustering coefficients are quite high (resp.0.5, 0.666 · · ·, and0.666 · · ·), indicating that
there is not only an important overlap, but that this overlapconcerns a significant part of each
neighbourhoods (and thus the two nodes have similar degrees). On the right, the two nodes have
a small clustering coefficient cc•(u, v) = 2

8
= 0.25, and the fact that the value of cc•(u, v) =

2
5

= 0.4 remains quite small indicates that this is not due to the factthat one of the two nodes
has a very high degree compared to the other one. If ones considers larger degree nodes, then the
difference betweensmallandhighvalues is clearer, but the figure would be unreadable.

With these definitions, one may define cc•(v), cc•(⊤), cc•(⊥), cc•(G), cc•(v), cc•(⊤),
cc•(⊥), and cc•(G) in a way similar to the one used above for cc•(v), cc•(⊤), cc•(⊥), and
cc•(G). The distributions and various correlations may then be observed.

We give in Table 3 the values obtained for our four examples together with the values obtained
for random bipartite graphs with same size and degree distributions (the values for purely random
bipartite graphs are similar). It appears clearly that the notions we introduced capture different
kinds of overlaps between neighbourhoods. However, exceptfor ccN (G), the obtained values

18



actors-movies authoring occurrences peer-to-peer
real random real random real random real random

cc•(⊤) 0.064 0.046 0.29 0.27 0.066 0.066 0.056 0.019
cc•(⊥) 0.36 0.20 0.31 0.25 0.065 0.038 0.076 0.074
ccN(G) 0.0082 0.00024 0.079 0.00012 0.053 0.048 0.0094 0.00019
cc•(⊤) 0.24 0.23 0.56 0.56 0.19 0.20 0.27 0.24
cc•(⊥) 0.81 0.79 0.73 0.70 0.64 0.61 0.39 0.42
cc•(⊤) 0.087 0.062 0.36 0.34 0.097 0.097 0.074 0.024
cc•(⊥) 0.37 0.21 0.33 0.26 0.069 0.041 0.091 0.089

Table 3: Bipartite clustering statistics on our four examples and on random bipartite graphs with
the same size and same degree distributions.

are not very different on random graphs and on real-world networks. This indicates that these
statistics do not capture a very significant feature of largereal-world networks, which will discuss
this further below. Instead, the obtained values for ccN (G) is significantly larger on real-world
networks than on random graphs, which shows that it capturesmore relevant information.
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Figure 6: Cumulative distributions of the various clustering coefficients in our four real-world
2-mode networks. First row: for top nodes. Second row: for bottom nodes.

We show in Figure 6 the cumulative distributions19 of cc•(v), cc•(v) and cc•(v) for our four
examples,i.e. for each valuex on the horizontal axis the ratio of all the nodes having a value
lower thanx for these statistics. Before entering in the discussion of these plots, notice that,
by definition, we have cc•(v) ≤ cc•(v) ≤ cc•(v) for anyv. Therefore, the lower plots in each
case of Figure 6 is the one of cc•(v), the upper is the one for cc•(v) and the one for cc•(v) is in
between.

More interesting, the plots exhibit quite different behaviours. In several cases (in particular
top of actors-movies, occurrences and peer-to-peer, as well as bottom of occurrences and peer-

19See the appendix, page 30 for more detailed definitions and hints on how to understand this kind of statistics.
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to-peer) the plots for cc•(v) and cc•(v) grow very rapidly and are close to1 almost immediately.
This means that the values of these statistics are very small, almost0, for most nodes: in these
cases, the neighbours of nodes have a small intersection, compared to the union of their neigh-
bourhoods. However, in several cases, the plots for cc•(v) grow much less quickly, and remain
lower than1 for a long time. In several cases, it is even significantly lower than1 by the end
of the plot, meaning that for an important number of nodes thevalue of cc•(v) is equal to1:
almost10% in the case of top of actors-movies, almost20% in the cases of top authoring and
bottom of peer-to-peer, and more than40% in the case of bottom of occurrences. This means
that, despite overlaps are in general small compared to their possible value, the neighbourhoods
of many low-degree nodes significantly or even completely overlap with other nodes neighbours.

Other cases display a very different behaviour: in both top and bottom plots of authoring,
and in bottom of actors-movies, it appears clearly that a significant number of nodes have a large
value for cc•(v), cc•(v) and cc•(v). This means that node neighbours overlap significantly, and
that this is not only a consequence of the fact that low degreenodes have their neighbourhoods
included in the ones of other nodes.
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Figure 7: Cumulative distributions of the cc• clustering coefficient in our four real-world 2-mode
networks, and in random bipartite graphs of the same size andsame degree distributions. First
row: for top nodes. Second row: for bottom nodes.

Again, our aim here is not to discuss in detail the specificities of each case, but to give
evidence of the fact that these statistics have nontrivial behaviours and capture significant in-
formation. It is clear from the discussion above that the three notions of clustering captured
by cc•(v), cc•(v) and cc•(v) are different, and give complementary insight on the underlying
network properties. One may however be surprised by the factthat cc•(v) often is very small,
which we deepen now by comparing its behaviours on real-world cases and on random ones, see
Figure 720.

20For clarity and to avoid long discussions on specific behaviours, which is out of our scope here, we only compare
the real-world and the random behaviours of cc•(v) (not of the two other notions of clustering coefficients).
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In these plots, it appears clearly that, except in the case ofbottom of actors-movies, the plots
of the real-world values and of the random ones are quite similar. This means that, concerning the
values of cc•(v), real-world graphs are not drastically different from random ones (they however
have slightly higher values of cc•(v) in most cases). In other words, this statistics does not
capture very significant information, according to the methodology described in Section 5. This
is due to the fact that the low degree nodes (which are numerous in our networks) have with high
probability their neighbours in common with high degree nodes; by definition, this induces a low
value for cc•(v), and even lower for cc•(v). This is true by construction for random graphs, and
the plots above show that this is mostly true for real-world networks also, which was not obvious.

Similar conclusions follow from the study of cc•(v), but the study of cc•(v) leads to the
opposite conclusion: an important number of nodes have their neighbourhood included in the
one of other (large degree) nodes, as already discussed, which happens much more rarely in
random graphs. We do not detail these results here, since they do not fit in the scope of this
paper. Instead, we will propose a new statistics in the next section that has several advantages on
the clustering coefficients discussed here and does not havetheir drawbacks.

Before turning to this other statistics, let us observe the correlations between node degrees
and their clustering coefficient. Again, for clarity and to maintain the paper within a reasonable
length, we focus on cc•(v) and its comparison with the random case. See Figure 8.
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Figure 8: Correlations of the cc•(v) clustering coefficient with node degrees in our four examples,
and in random bipartite graphs with the same size and degree distributions. First row: for top
nodes. Second row: for bottom nodes.

The values for the random graphs are below the ones for the real-world cases (or they coincide
at some points), in all plots. This shows that the value of cc•(v) are larger in real-world cases
than in random ones, but the difference is small, which confirms the observations above. More
interestingly, it appears clearly that in most cases cc•(v) decreases as a power of the degree ofv

(straight line in log-log scale). In other words, the clustering coefficient of low degree nodes is
quite large, but the one of large degree nodes is very small, like in random graphs.
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9 The notion of redundancy.

In the previous section, we discussed several ways to extendthe classical notions of clustering
coefficient to the bipartite case. One may wonder if the bipartite nature of the networks under
concern may lead to new, specific notions, just like we observed concerning degrees in Section 7.
Moreover, one may want to capture the notion of overlap concerning oneparticular node; in
previous section, this was only possible by averaging the value obtained for a possibly large
number of pairs of nodes. This section answers this: it is devoted to a new notion aimed at
capturing overlap in bipartite networks, in a node-centered fashion.

First notice that neighbourhood overlaps correspond to links which are obtained in several
ways during the projection, and that these links cannot be distinguished one from another in the
projection. They also reveal the fact that, among all the links induced by a node of a bipartite
graph in the projection, many (and possibly all) may actually be induced by others too. In other
words, if we remove this node from the bipartite graph then the projection may be only slightly
changed (or even not at all). This can be captured by the following parameter, which we call the
redundancy coefficientof v:

rc(v) =
|{{u, w} ⊆ N(v), ∃ v′ 6= v, (v′, u) ∈ E and(v′, w) ∈ E}|

|N(v)|(|N(v)|−1)
2

.

In other words, the redundancy coefficient ofv is the fraction of pairs of neighbours ofv linked
to another node thanv. In the projection, these nodes would be linked together even if v were not
there, see Figure 9; this is why we call this the redundancy. If it is equal to1 then the projection
would be exactly the same withoutv; if it is 0 it means that none of its neighbours would be
linked together in the projection21.

A

Figure 9: Example of redundancy computation. From left to right: a bipartite graph, its⊥-
projection, and the⊥-projection obtained if the nodeA is first removed. Only two links disap-
pear, leading to rc(A) = 4

6
= 0.666 · · ·.

Again, we can derive from this definition the ones of rc(⊤), rc(⊥) and rc(G), as well as
distributions and correlations. We give in Table 4 the values obtained for our four examples and
for comparable random graphs. It appears clearly from thesevalues that, except in the case of
occurrences, the redundancy coefficient is much larger in real-world networks than in random

21Interestingly, the notion of redundancy we propose here is equivalent to the generalisation of the notion of
clustering coefficient to squares, denoted byC4(), proposed independently in Lindet al., 2005: it is the probability,
when a node has two neighbours, that these two nodes have (another) neighbour in common. Though the two points
of view are quite different, and the definitions termed differently, the two notions are exactly the same.
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graphs, and that it actually is very large: in peer-to-peer,for instance, on average half the pairs
of peers that have a common interest for a given data also havea common interest for another
data. These values are much larger than the ones for the clustering coefficients in the previous
section, see Table 3, and the difference they make between random graphs and real-world net-
works is much more significant. To this regard, it may be considered as a better generalisation
of clustering coefficients in 1-mode networks than the bipartite clustering coefficients defined in
Section 8.

The case of occurrences is different: the projections on both sides are very dense, which
is very particular as already noticed. The redundancy coefficient therefore is huge, but this is
not because of a property of how the neighbourhoods overlap:this is a direct consequence of the
high density of the projections. In such a case, the redundancy coefficient is meaningless, and we
will therefore not discuss this case any further in this section; simply notice that the redundancy
coefficient has similar behaviours in such graphs and in their random equivalent.

actors-movies authoring occurrences peer-to-peer
real random real random real random real random

rc(⊤) 0.26 0.014 0.38 0.0016 0.80 0.74 0.31 0.011
rc(⊥) 0.25 0.011 0.33 0.00037 0.83 0.75 0.50 0.069

Table 4: The redundancy coefficient for our four examples andfor random bipartite graphs with
the same size and same degree distributions.

We show in Figure 10 the distributions of rc(v) for our four examples together with plots
for comparable random graphs. These plots confirm that the redundancy coefficient captures
a property that makes large real-world networks different from random ones: in all the cases
except occurrences, the value of this coefficient in random graphs is almost0 for all nodes (both
top and bottom); instead, in real-world networks it is significantly larger, and equal to1 for a
large portion of the nodes. This last fact is not surprising since cc•(v) = 1 implies rc(v) = 1 for
all nodesv.

However, the redundancy coefficient has a much wider range ofvalues than cc•(v), which
generally is close to0 or 1, see Figure 6. Moreover, the redundancy coefficient captures a differ-
ent property: in the case of actors-movies, for instance, itdoes not only mean that a significant
number of movies have a cast that is a sub-cast of another movie (as captured by cc•(v)), but that
when two actors act together in a movie then there often exists (at least) another movie in which
they also act together. Both are interesting, and complementary, but the redundancy coefficient
certainly captures a more general feature.

Let us now observe the correlations between node redundancycoefficient and their degree,
plotted in Figure 11. In these plots, except for occurrences, the plots for the random graphs co-
incide with the x-axis, which confirms that the values of noderedundancy in random graphs are
very small, independently of node degrees. Real-world cases, on the contrary, exhibit nontrivial
behaviours. In most cases, the redundancy decreases with the degree, which is not surprising
since the number of links needed in the projection in order for the redundancy of a node to be
large grows with the square of its degree. However, the redundancy remains large even for quite
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Figure 10: Cumulative distributions of the redundancy coefficient in our four real-world 2-mode
networks, and in random bipartite graphs of the same size andsame degree distributions. First
row: for top nodes. Second row: for bottom nodes.

large degrees: it is close to0.15 for nodes of degree30 for top nodes in actors-movies, for in-
stance, meaning that among the435 possible pairs of neighbours of these nodes, on average65
are linked to another top node in common. This has a very low probability in random graphs.
Likewise, one may notice that some very high degree nodes have a very large redundancy coef-
ficient in several cases, which also is a significant information.
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Figure 11: Correlations of redundancy coefficient with nodedegrees in our four real-world 2-
mode networks, and in random bipartite graphs of the same size and same degree distributions.
First row: for top nodes. Second row: for bottom nodes.

One may push further the study of the redundancy, for instance by counting how many nodes
have an overlap with a given one, and so may be responsible forits high redundancy. This is
nothing but the degree of the node in the appropriate projection, which emphasises once again
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that our approach may be fruitfully combined with the one based on projection, as argued in
Section 3.

10 Conclusion and perspectives.

The core contribution of this paper is a set of rigorous and coherent statistical properties usable as
a basis for the analysis of large real-world 2-mode networksfollowing the post-1998 approach.
These statistics go from the very basics (size, distances, etc) to subtle ones (typically various
clustering coefficients and their correlations with degrees). Let us insist on the fact that we
do not only extend classical notions to the bipartite case, but also develop new notions which
make sense only in this context. Moreover, the proposed approach avoids projection of 2-mode
networks into 1-mode ones, which makes it possible to grab much richer information. We hope
that this unified framework and discussion will help significantly people involved in analysis of
such networks.

A first conclusion drawn from the computation of these statistics on four representative real-
world examples is that, just like large real-world 1-mode networks, they have nontrivial prop-
erties in common which make them very different from random networks. In particular, there
is a high heterogeneity between degrees of nodes of at least one kind, and there are significant
overlaps between neighbourhoods. Concerning this last property, we show that immediate exten-
sions of the classical notions of clustering coefficients are not sufficient to make the difference
between real-world networks and random graphs; we propose the notion ofredundancyas a rel-
evant alternative. Overall, these facts are strikingly close to what is met in 1-mode networks and
should play a similar role. Conversely, we observed many properties which behave differently
depending on the 2-mode network under concern, which may be used to describe a particular
instance in more details.

Notice that these contributions do not only concern the 2-mode networks themselves, but
also their projection: keeping the bipartite nature of the data makes it possible to obtain more
precise information on the projection itself. For instance, statistics on degrees make it possible to
separate high degree nodes in the projection into two distinct classes: the ones which are linked
to many nodes in the 2-mode network, and the ones linked to nodes of high degree in the 2-mode
network. This kind of analysis could be deepened using clustering and redundancy notions.

Going further, one may use the notions we introduced here to define new relevant statistics
on 1-mode networks. Indeed, any graphG = (V, E) may be seen as a bipartite graphG′ =
(V, V, E) where the links are between twocopiesof V . The statistics we studied here may then
be computed on this bipartite graph, leading to new insight on the original graphG.

There are many directions to improve and continue the work presented here. Among them,
let us cite the analytic study of the parameters we propose, which can in particular be done
using the techniques in Newmanet al., 2001b or in Robinset al., 2005. One might prove in
this way the expected behaviour of these parameters and deepen their understanding. Another
direction is the developement of models of 2-mode networks capturing the properties met in
practice. Just as is the case for 1-mode networks, much can bedone concerning degrees, see
Newmanet al., 2001a; Guillaume & Latapy, 2004a, but very little is known concerning the
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modeling of clustering and redundancy. Finally, applying these results to practical cases and
giving precise interpretations of their meanings in these different contexts would probably help in
designing other relevant notions. To this regard, the statistical properties described in this paper
may help in deepening the key questions about group formation and relations (like the emergence
of interlocking in company boards, see Robins & Alexander, 2004; Conyon & Muldoon, 2004;
Battiston & Catanzaro, 2004; Newmanet al., 2001a or of scientific areas and communities, see
Roth & Bourgine, 2005; Morris & Yen, 2005; Newman, 2001a; Newman, 2001b; Newman,
2000), which we did not consider here.

Let us conclude by noticing that the field of large network analysis is only at its beginning,
though much has been done, before and after 1998, on 1-mode networks. However, most real-
world networks are directed, weighted, labelled, hybrid, and/or evolve during time. Some work
has recently been done concerning weighted networks (Barrat et al., 2004; Barthélemyet al.,
2005; Newman, 2004), and we propose here a contribution concerning 2-mode networks. How-
ever, there is still much to do to be able to analyse efficiently these various kinds of networks.
Extending the notions we discussed here to the case of multipartite graphs (nodes are in sev-
eral disjoint sets, with links between nodes in different sets only) would be a step further in this
direction.

Acknowledgments
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Ferrer, R., & Solé, R.V. 2001. The Small-World of Human Language.Pages 2261–2265 of: Proceedings
of the Royal Society of London, vol. B268.

Fessant, F., Handurukande, S., Kermarrec, A.-M., & Massoulié, L. 2004. Clustering in Peer-to-Peer File
Sharing Workloads.In: 3-rd International workshop on Peer-To-Peer Systems (IPTPS).

27



Freeman, Linton C. 2003. Finding social groups: A meta-analysis of the southern women data.
Garlaschelli, Diego, Battiston, Stefano, Castri, Maurizio, Servedio, Vito D. P., & Caldarelli, Guido. 2004.

The scale-free Topology of market investments. ArXiV preprint cond-mat/0310503 .
Guillaume, Jean-Loup, & Latapy, Matthieu. 2004a. Bipartite graphs as Models of Complex Networks.

In: Lecture Notes in Computer Sciences (LNCS), proceedingsof the 1-st International Workshop on
Combinatorial and Algorithmic Aspects of Networking (CAAN).

Guillaume, Jean-Loup, & Latapy, Matthieu. 2004b. Bipartite Structure ofall Complex Networks.Infor-
mation Processing Letters (IPL), 90(5), 215–221.

Guillaume, Jean-Loup, Le Blond, Stevens, & Latapy, Matthieu. 2004. Statistical analysis of a P2P query
graph based on degrees and their time-evolution.In: Lecture Notes in Computer Sciences (LNCS),
proceedings of the 6-th International Workshop on Distributed Computing (IWDC).

Guillaume, Jean-Loup, Le Blond, Stevens, & Latapy, Matthieu. 2005. Clustering in P2P exchanges and
consequences on performances.In: Lecture Notes in Computer Sciences (LNCS), proceedingsof the
4-th international workshop on Peer-to-Peer Systems (IPTPS).

Holme, Petter, Park, Sung Min, Kim, Beom Jun, & Edling, Christofer R. 2004. Korean univer-
sity life in a network perspective: Dynamics of a large affiliation network. ArXiV preprint
cond-mat/0411634 .

Iamnitchi, Adriana, Ripeanu, Matei, & Foster, Ian. 2004. Small-World File-Sharing Communi-
ties. Proceedings of the 23-rd IEEE international conference INFOCOM. ArXiV preprint
cs.DC/0307036 .

Jr., John M. Roberts. 2000. Correspondence analysis of two-mode network data.Social Networks, 22,
65–72.

Kleinberg, J.M. 2000a. Navigation in a small world.Nature, 406, 845.
Kleinberg, J.M. 2000b. The Small-World Phenomenon: An Algorithmic Perspective.In: Proceedings of

the 32nd ACM Symposium on Theory of Computing (STOC).
Kogut, B., & Walker, G. 2003. Restructuration ou désintégration du réseau des firmes allemandes ?Gérer
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How to read and understand our plots.

We give in this appendix additional hints on how to read and understand the plots presented in
this paper, for the readers who are not familiar with these statistical approaches. Of course, this
appendix will not replace a statistics textbook, but it aimsat giving sufficient intuition on the
notions under concern to help the reader significantly.

Distributions.

The main statistical notion used in this paper is the one ofdistributionof a measured quantity: it
is, for each possible valuek of this quantity, the fractionpk of objects which exhibit this value
when the quantity is measured on them22. For instance, the degree distribution in a network is,
for each integerk, the fraction of nodes of degreek (i.e.with k links).

One may consider thenumberof objects in place of thefraction. Both notions of distributions
are strongly related, since the fraction is the number divided by the total number of objects. As
a consequence, the shape of the plot is exactly the same; the only difference lies in the rescaling
of the vertical axis (initially between 0 and the total number of objects, to between 0 and 1 after
rescaling). Both variants have their own advantages and drawbacks. In this paper, we use the
fractionvariant to make it easier to compare between different cases: it is easier to compare the
fact that in one network the fraction of degree one nodes is0.5 (i.e.50 % of the nodes have degree
one) and in another one it is0.8 (i.e.80 %) than the raw numbers.

In our context, the key property of the observed distributions is wether they arehomogeneous
or heterogeneous.

The plot of an homogeneous distribution23 have a peak around an average value, and no
object with measured value very different from this average24. More formally, the fraction of
objects with measured valuek, pk, decreases exponentially fast when one goes away from the
average value. Intuitively, this means that no object are very different from the average case
concerning the observed value. This has important consequences, in particular the fact that the
average is meaningful: it indicates thenormalbehavior, or what one may expect when taking an
object at random.

On the contrary, some distributions are heterogeneous25: there are several orders of magni-
tude between observed values, and there is a significant number of objects for which the mea-
sured value is very different from the average one. In such cases,pk decreases only polynomially
fast when one goes away from the average value, thus much slower than in an homogeneous
distribution. Then, the average value brings little information: it is not the value observed on
most objects, and a randomly chosen object may exhibit a verydifferent value. In such cases,
characterising the heterogeneity of the distribution is more meaningful. This is generally done
by fitting the distribution with a power-law (pk ∼ k−α for a constantα) and then considering the

22i.e. the number of such objects divided by the total number of objects.
23Most famous such distributions are normal, Gaussian and Poissonian distributions.
24A typical example is body height: there is an average height,and nobody is twice this value high.
25Most famous such distributions are Zipf and power-law distributions.
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exponent of this power-law (α) as a measure of the heterogenity of the distribution (lowerexpo-
nents reveal higher heterogeneity, but the fact that the distribution is well fitted by a power-law
is sufficient to show that it is highly heterogeneous).

Notice that it is not immediate to determine if a given distribution is well fitted by a power-
law: on usual plots, the difference between exponential andpolynomial decreases is not visible.
This is why, when one suspects the presence of a power-law, one uses log-log scales: instead of
plotting pk as a function ofk one plotslog(pk) as a function oflog(k). If the distribution is a
power-law, we havepk ∼ k−α, and thuslog(pk) ∼ −α · log(k). Therefore, the plot will be a
straight line of negative slopeα, which is easy to check. If the distribution has an exponential
decrease, the log-log plot will not be a straight line.

On empirical data, of course, the fits are never perfect. As one may observe on the plots of
this paper, however, the approach just described makes it possible to distinguish between several
cases. In Figure 2, for instance, in the case of occurrence dataset, the bottom degree distribution
is very well fitted by a power-law, whereas the top degree distribution certainly is not a power-
law. This confirms the immediate observation that, in this case, bottom degrees span several
orders of magnitudes (from1 to more than10000) whereas top degrees do not.

Cumulative distributions.

For several reasons, it is interesting in some situations toconsider thecumulativedistributions,
instead of classical distributions as described above: oneplots the fraction of objects having a
measured valuelower than or equal tok, for eachk, instead of the fraction of objects having
exactly this measured value.

This is particularily useful when one wants to observe the distribution of a property taking
real values, not only integer ones: it is sufficient to consider a finite number of points in the
plot. This is why we used cumulative distributions for our plots of clustering coefficients and
redundancy (Figures 6, 7 and 10). It also helps in estimatingthe number of nodes with high
clustering coefficients or redundancy, which is appealing in this context.

Correlations.

Finally, we present in this paper another kind of plots, aimed at observing correlations between
different values attached to a same object (like the degree of a node and the average degree of
its neighbors, in Figure 3). There are many way to investigate such correlations. We use here
plots in which we put a dot for each object, this dot having coordinates given by the two values
of interest (in Figure 3, each node leads to a dot for whichx is the degree of the node andy is
the average degree of its neighbors).

Such plots make it possible to observe if having a given valuefor one observed property is
related to having a given value for another one. In particular, one may observe if having high
value for the first implies a high value for the second. In the case of Figure 3, for instance, the
leftmost plot of the first row (top degree correlations for the actors-movies network) shows that
in random networks the average degree of neighbors of a node is independent of the degree of the
node: it forms an horizontal line, indicating that it is a constant (roughly equal to32). Instead, in
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the same plot, one sees that for high degree nodes the averagedegree of their neighbors tends to
be smaller than for lower degree nodes, thus indicating thathigh degree nodes are more linked to
low degree nodes than others (and more than if links were random). In terms of the underlying
data, it shows that if a movie has many actors, then many of these actors played in few movies
only.
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