Dynamics of and on complex networks

Clémence Magnien

Complex Networks team

http://complexnetworks.fr

LIP6 laboratory (CNRS, Université Pierre et Marie Curie)

October 15th, 2010

Context

2 Measurement

3 Dynamics Description

Complex Networks

computer science: web, internet, peer-to-peer, usages, etc.

social sciences: friendships, communications, collaborations, exchanges, economics, etc.

biology: brain, genes, proteins, ecosystems, etc.

linguistics: synonymy, co-occurrences, etc.

transportation: road, air, electricity, etc

etc, etc

networks
very different contexts
no mathematical definition

Complex Networks

most complex networks share non-trivial properties [WS98]

common properties:

- low average distance (small-world)
- heterogeneous degrees (power-law, scale-free)
- low global density vs high local density (triangles, clustering)

Large body of works on complex networks \longrightarrow acknowledged tools and notions

Complex Networks

most complex networks share non-trivial properties [WS98]

common properties:

- low average distance (small-world)
- heterogeneous degrees (power-law, scale-free)
- low global density vs high local density (triangles, clustering)

Large body of works on complex networks

→ acknowledged tools and notions

What about dynamics?

(All) complex networks are dynamic

Appearance and disappearance with time of:

- nodes
- links

Few or no established notions for the study of these dynamics

What about dynamics?

(All) complex networks are dynamic

Appearance and disappearance with time of:

- nodes
- links

Few or no established notions for the study of these dynamics

What about dynamics (bis)?

Dynamics on networks:

Spreading phenomena (epidemics, rumours, ...) Nodes' states change

Team activities – Dynamics

Measurement

Acquiring informations on the dynamics (of the network or on the network)

Description

Statistical properties (life duration, correlations, . . .) Structural properties (communities)

Structural dynamics :

normal vs abnormal

Spreading phenomena:

correlations with community structures

Outline

Context

- 2 Measurement
- 3 Dynamics Description

A radar for the internet

[Latapy, Magnien, Ouédraogo 2008]

Internet topology

Routers, IP-level links

Mesurement: traceroute tool

- Partial (and biased) information
- Periodical measurements: costly → low frequency

Orthogonal approach: ego-centred view

a monitor

well-defined object

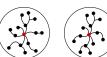
several destinations

high frequency: radar

A radar for the internet

[Latapy, Magnien, Ouédraogo 2008]

Routers, IP-level links


Mesurement: traceroute tool

- Partial (and biased) information
- Periodical measurements: costly

 low frequency

Orthogonal approach: ego-centred view

- a monitor
- several destinations

high frequency: radar

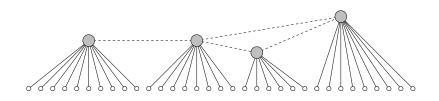
well-defined object

Internet topology

Tool and measurements

- Design of a dedicated tool: tracetree
- Calibration

```
\longrightarrow \sim 100 rounds / day
```

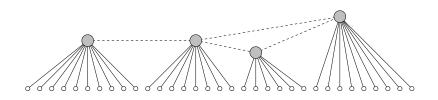

Measurements

- from > 100 monitors (planetlab, ...)
- for several months

Tool and data are publicly available

eDonkey P2P system

[Allali, Latapy, Magnien 2009]


peer		server
keywords	\longrightarrow	
	\longleftarrow	filelist
file	\longrightarrow	
	\leftarrow	providers

Measurements

- server
- client, honeypot

eDonkey P2P system

[Allali, Latapy, Magnien 2009]

peer		server
keywords	\longrightarrow	
	\leftarrow	filelist
file	\longrightarrow	
	\leftarrow	providers

Measurements

- server
- client, honeypot

Spreading phenomenon – Happy flu experiment [Friggeri, Cointet, Latapy 2010]

Happy flu: dedicated experiment

web applet copied from page to page

+ centralised data (copies and sightings)

2 months measurements \longrightarrow 492 participants, \sim 98 000 viewers

Heterogeneous influence

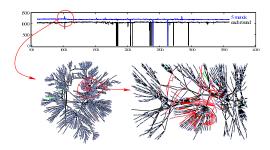
Measurement – summary

Measurements of several networks

Publicly available

Massive datasets
(size of network | measurement duration | frequency)

Outline


1 Context

- 2 Measurement
- 3 Dynamics Description

Event detection

[Hamzaoui, Latapy, Magnien 2010]

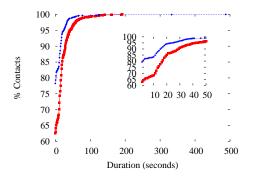
Radar measurements: identify abnormal events

Event detection

Automatic methods

Identify homogeneous statistics with outliers

Interpretation

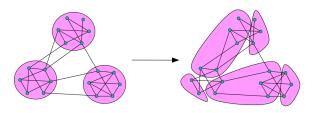

Need to validate with other methods/observations

→ Apply to other datasets

Characterise expected behaviour

Contact duration in a population.

- how much time do two people stay physically close?
- do different nodes have different contact duration patterns?

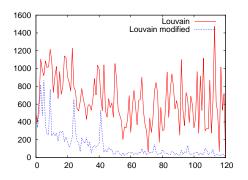


Blue node: longer maximal duration Red node: longer contacts on average

Dynamic Communities

[Aynaud, Guillaume 2010]

Community: group of nodes with many links inside, few outside


Detection: Louvain method

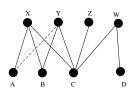
Problem: existing detection algorithms are unstable

(one change → very different partitions)

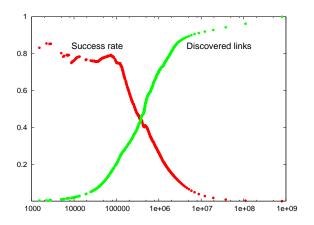
Dynamic Communities

Stabilise the algorithm: start from partition of previous time step (instead of each node in a different partition)

Links with event detection

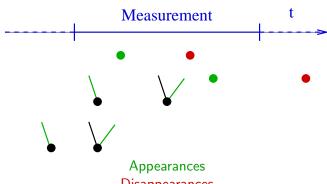

Link prediction

Bipartite networks


- P2P users/files
- Buyers/products
-

Notion of similarity between users

Based on common neighbourhood Predict links which strengthen similarity


Prediction

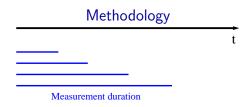
- Influence of learning / prediction period
- Different notions of similarity


[Benamara, Magnien 2010]

Finite measurement period → unobserved events

Disappearances

Bias in the estimation of dynamic properties Longer measurement \longrightarrow smaller bias



Evolution as a function of measurement length

- Fluctuations

 no conclusion
- ullet Stable \Longrightarrow independant of measurement length (a priori).

Distinction between different behaviours (normal vs abnormal)

Evolution as a function of measurement length

- Fluctuations ⇒ no conclusion
- ullet Stable \Longrightarrow independant of measurement length (a priori).

Distinction between different behaviours (normal vs abnormal)

Evolution as a function of measurement length

- Fluctuations ⇒ no conclusion
- ullet Stable \Longrightarrow independant of measurement length (a priori).

Distinction between different behaviours (normal vs abnormal)

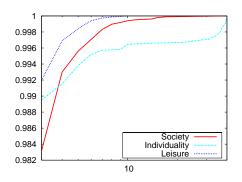
Spreading phenomena

Spreading in blogs

A post citing another post

→ information spreading

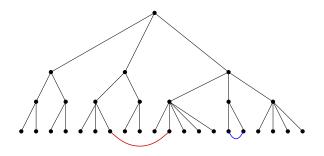
File spreading in a P2P system


Massive data

Large cascades

- Links between spreading and communities (structural, thematic)
- Confrontation with classical hypotheses

Spreading phenomena and thematic communities


Popularity of different thematic communities

 \longrightarrow impact of thematic communities on spreading

Spreading phenomena and structural communities

Hierarchical community structure

Spreading from node to node: how far in the community structure?

Conclusion

dynamics of and on networks measurement and description

Our specificities:

- studies based on real-world cases
- design generic notions/methods

Questions

- events vs normal dynamics
- normal vs abnormal behaviour
- bias induced by measurement
- standard notions and tools for description
- modelling / formalisms