Phénomènes de diffusion dans les réseaux

Clémence Magnien

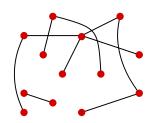
magnien@shs.polytechnique.fr

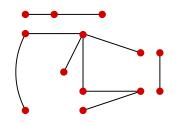
Laboratoire J.-V. Poncelet - CNRS - HMY CREA - CNRS - École Polytechnique

Outline

- Contexte
- 2 Influence de la structure du réseau
- Analyse des diffusions
- Mesure

Outline


- Contexte
- Influence de la structure du réseau
- Analyse des diffusions
- 4 Mesure


Phénomènes de diffusion

Phénomènes se propageant de proche en proche dans un réseau

- Maladie (contacts physiques)
- Rumeur (connaissance)
- Virus informatique (e-mail)
- Activation neuronale (cerveau)

Réseau

Ensemble de nœuds reliés par des liens.

On s'intéresse uniquement à la structure du réseau.

- Réseau (Network) ←→ Graphe (Graph)
- Nœuds (Nodes) ←→ Sommets (Vertices)
- Liens (Links) ← Arêtes (Edges)

Modélisation de phénomènes

Règles simples

Exemple : le modèle SIS

[Diekmann et Heesterbeek, 2000]

Deux états pour les nœuds :

- Sains (Susceptible)
- Contaminés (Infected)

Règles:

- S \longrightarrow I avec probabilité ρ (par voisin contaminé)
- I \longrightarrow S avec probabilité δ

◆ロト ◆部 > ◆注 > ◆注 > ・注 ・ から(*)

Modélisation de phénomènes

Règles simples

Deux raisons:

- Permet de dégager des tendances générales
- Permet de faire des analyses formelles

Modélisation de phénomènes

Règles simples

Deux raisons:

- Permet de dégager des tendances générales
- Permet de faire des analyses formelles

Pas d'attributs sur les nœuds et les liens du réseau.

Outline

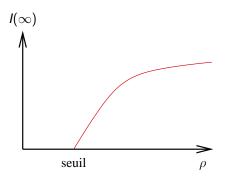
- Contexte
- 2 Influence de la structure du réseau
- Analyse des diffusions
- 4 Mesure

Réseaux aléatoires

Modéliser les réseaux

Liens placés entre des paires de nœuds choisies au hasard

Les nœuds ont approximativement tous le même degré

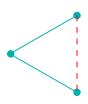

Résultat théorique

Réseau aléatoire :

Phénomène de seuil

[DH00]

État stationnaire : fraction de sommets contaminés constante.


distance moyenne

Moyenne sur toutes les paires de nœuds de leur distance (longueur d'un plus court chemin).

distance moyenne

clustering

Probabilité que deux voisins d'un même nœud soient liés.

distance moyenne

clustering

disribution des degrés

Pour tout k, P_k : nombre de nœuds de degré k

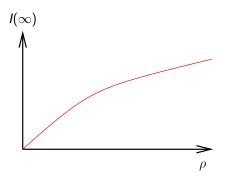
- Loi de Poisson : P_k decroît exponentiellement en fonction de k.
- Hétérogène: P_k decroît beaucoup plus lentement.

	en pratique	aléatoire
distance moyenne	courte	$\sim \log(n)$
clustering	large	$\sim \frac{1}{n}$
disribution des degrés	hétérogène	Poisson

 \hookrightarrow Résaux réels \neq réseaux aléatoires.

[Watts et Strogatz, 1998]

Modèle SIS, réseaux avec degrés hétérogènes


Degré moyen non représentatif

→ Raisonnements précédents pas valides

Le seuil disparaît

[Pastor-Satorras et Vespignani, 2001]

Quel que soit la force de propagation, on a une épidémie.

ロト (個) (重) (重) 重 の(で

Problématique

Comprendre l'interaction entre :

- Une règle locale
- Un réseau

Par exemple, prise en compte du clustering

Problématique

Comprendre l'interaction entre :

- Une règle locale
- Un réseau

Par exemple, prise en compte du clustering

Dépendant de l'étude de la structure des réseaux.

Outline

- Contexte
- Influence de la structure du réseau
- Analyse des diffusions
- 4 Mesure

Analyse

Dans ce qu'on a vu :

Caractérisation d'une diffusion ← Nombre de nœuds touchés

Besoin de statistiques plus fine pour décrire une diffusion.

Vitesse de propagation d'une épidémie

[Barthélémy et al, 2005]

Taux de propagation ≫ taux de guérison étude de la première vague de l'épidémie.

Résultat théorique :

Propagation plus rapide sur des réseaux avec degrés hétérogènes.

Outline

- Contexte
- Influence de la structure du réseau
- Analyse des diffusions
- Mesure

Mesure d'une diffusion

- Étudier les diffusions réelles
- Proposer des modèles réalistes

Mesurer:

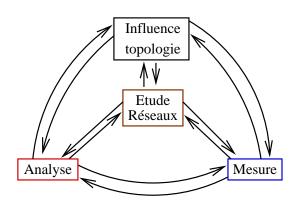
- quels nœuds sont touchés à quels moments
- le réseau

Mesure d'une diffusion

Mesurer un réseau : tâche très difficile, plusieurs problèmes (accès à l'information, contraintes techniques, taille du résau, ...)

Savoir quels nœuds sont touchés à quels moments : encore plus difficile

Des avancées sont possibles


Conclusion

Influence topologie

Analyse

Mesure

Conclusion

